Floyd-Warshall算法详解(转)

Floyd-Warshall算法,简称Floyd算法,用于求解任意两点间的最短距离,时间复杂度为O(n^3)。我们平时所见的Floyd算法的一般形式如下:

1 void Floyd(){
2     int i,j,k;
3     for(k=1;k<=n;k++)
4         for(i=1;i<=n;i++)
5             for(j=1;j<=n;j++)
6                 if(dist[i][k]+dist[k][j]<dist[i][j])
7                     dist[i][j]=dist[i][k]+dist[k][j];
8 }

注意下第6行这个地方,如果dist[i][k]或者dist[k][j]不存在,程序中用一个很大的数代替。

最好写成if(dist[i][k]!=INF && dist[k][j]!=INF && dist[i][k]+dist[k][j]<dist[i][j]),从而防止溢出所造成的错误。
上面这个形式的算法其实是Floyd算法的精简版,而真正的Floyd算法是一种基于DP(Dynamic Programming)的最短路径算法。
  设图G中n 个顶点的编号为1到n。令c [i, j, k]表示从i 到j 的最短路径的长度,其中k 表示该路径中的最大顶点,也就是说c[i,j,k]这条最短路径所通过的中间顶点最大不超过k。因此,如果G中包含边<i, j>,则c[i, j, 0] =边<i, j> 的长度;若i= j ,则c[i,j,0]=0;如果G中不包含边<i, j>,则c (i, j, 0)= +∞。c[i, j, n] 则是从i 到j 的最短路径的长度。
  对于任意的k>0,通过分析可以得到:中间顶点不超过k 的i 到j 的最短路径有两种可能:该路径含或不含中间顶点k。若不含,则该路径长度应为c[i, j, k-1],否则长度为 c[i, k, k-1] +c [k, j, k-1]。c[i, j, k]可取两者中的最小值。
状态转移方程:c[i, j, k]=min{c[i, j, k-1], c [i, k, k-1]+c [k, j, k-1]},k>0。
  这样,问题便具有了最优子结构性质,可以用动态规划方法来求解。

为了进一步理解,观察上面这个有向图:若k=0, 1, 2, 3,则c[1,3,k]= +∞;c[1,3,4]= 28;若k = 5, 6, 7,则c [1,3,k] = 10;若k=8, 9, 10,则c[1,3,k] = 9。因此1到3的最短路径长度为9。
  下面通过程序来分析这一DP过程,对应上面给出的有向图:

1 #include <iostream>
 2 using namespace std;
 3
 4 const int INF = 100000;
 5 int n=10,map[11][11],dist[11][11][11];
 6 void init(){
 7     int i,j;
 8     for(i=1;i<=n;i++)
 9         for(j=1;j<=n;j++)
10             map[i][j]=(i==j)?0:INF;
11     map[1][2]=2,map[1][4]=20,map[2][5]=1;
12     map[3][1]=3,map[4][3]=8,map[4][6]=6;
13     map[4][7]=4,map[5][3]=7,map[5][8]=3;
14     map[6][3]=1,map[7][8]=1,map[8][6]=2;
15     map[8][10]=2,map[9][7]=2,map[10][9]=1;
16 }
17 void floyd_dp(){
18     int i,j,k;
19     for(i=1;i<=n;i++)
20         for(j=1;j<=n;j++)
21             dist[i][j][0]=map[i][j];
22     for(k=1;k<=n;k++)
23         for(i=1;i<=n;i++)
24             for(j=1;j<=n;j++){
25                 dist[i][j][k]=dist[i][j][k-1];
26                 if(dist[i][k][k-1]+dist[k][j][k-1]<dist[i][j][k])
27                     dist[i][j][k]=dist[i][k][k-1]+dist[k][j][k-1];
28             }
29 }
30 int main(){
31     int k,u,v;
32     init();
33     floyd_dp();
34     while(cin>>u>>v,u||v){
35         for(k=0;k<=n;k++){
36             if(dist[u][v][k]==INF) cout<<"+∞"<<endl;
37             else cout<<dist[u][v][k]<<endl;
38         }
39     }
40     return 0;
41 }

输入 1 3
  输出 +∞
            +∞
            +∞
            +∞
            28
            10
            10
            10
            9
            9
            9

Floyd-Warshall算法不仅能求出任意2点间的最短路径,还可以保存最短路径上经过的节点。下面用精简版的Floyd算法实现这一过程,程序中的图依然对应上面的有向图。

1 #include <iostream>
 2 using namespace std;
 3
 4 const int INF = 100000;
 5 int n=10,path[11][11],dist[11][11],map[11][11];
 6 void init(){
 7     int i,j;
 8     for(i=1;i<=n;i++)
 9         for(j=1;j<=n;j++)
10             map[i][j]=(i==j)?0:INF;
11     map[1][2]=2,map[1][4]=20,map[2][5]=1;
12     map[3][1]=3,map[4][3]=8,map[4][6]=6;
13     map[4][7]=4,map[5][3]=7,map[5][8]=3;
14     map[6][3]=1,map[7][8]=1,map[8][6]=2;
15     map[8][10]=2,map[9][7]=2,map[10][9]=1;
16 }
17 void floyd(){
18     int i,j,k;
19     for(i=1;i<=n;i++)
20         for(j=1;j<=n;j++)
21             dist[i][j]=map[i][j],path[i][j]=0;
22     for(k=1;k<=n;k++)
23         for(i=1;i<=n;i++)
24             for(j=1;j<=n;j++)
25                 if(dist[i][k]+dist[k][j]<dist[i][j])
26                     dist[i][j]=dist[i][k]+dist[k][j],path[i][j]=k;
27 }
28 void output(int i,int j){
29     if(i==j) return;
30     if(path[i][j]==0) cout<<j<<‘ ‘;
31     else{
32         output(i,path[i][j]);
33         output(path[i][j],j);
34     }
35 }
36 int main(){
37     int u,v;
38     init();
39     floyd();
40     while(cin>>u>>v,u||v){
41         if(dist[u][v]==INF) cout<<"No path"<<endl;
42         else{
43             cout<<u<<‘ ‘;
44             output(u,v);
45             cout<<endl;
46         }
47     }
48     return 0;
49 }

输入 1 3                    
  输出 1 2 5 8

floyd算法

弗洛伊德(Floyd)算法过程:
1、用D[v][w]记录每一对顶点的最短距离。
2、依次扫描每一个点,并以其为基点再遍历所有每一对顶点D[][]的值,看看是否可用过该基点让这对顶点间的距离更小。

算法理解:
最短距离有三种情况:
1、两点的直达距离最短。(如下图<v,x>)
2、两点间只通过一个中间点而距离最短。(图<v,u>)
3、两点间用通过两各以上的顶点而距离最短。(图<v,w>)

对于第一种情况:在初始化的时候就已经找出来了且以后也不会更改到。
对于第二种情况:弗洛伊德算法的基本操作就是对于每一对顶点,遍历所有其它顶点,看看可否通过这一个顶点让这对顶点距离更短,也就是遍历了图中所有的三角形(算法中对同一个三角形扫描了九次,原则上只用扫描三次即可,但要加入判断,效率更低)。
对于第三种情况:如下图的五边形,可先找一点(比如x,使<v,u>=2),就变成了四边形问题,再找一点(比如y,使<u,w>=2),可变成三角形问题了(v,u,w),也就变成第二种情况了,由此对于n边形也可以一步步转化成四边形三角形问题。(这里面不用担心哪个点要先找哪个点要后找,因为找了任一个点都可以使其变成(n-1)边形的问题)。

floyd的核心代码:

for (k=0;k<g.vexnum;k++)
{
    for (i=0;i<g.vexnum;i++)
    {
        for (j=0;j<g.vexnum;j++)
        {
            if (distance[i][j]>distance[i][k]+distance[k][j])
            {
                distance[i][j]=distance[i][k]+distance[k][j];
            }
        }
    }
}

结合代码 并参照上图所示 我们来模拟执行下 这样才能加深理解:
第一关键步骤:当k执行到x,i=v,j=u时,计算出v到u的最短路径要通过x,此时v、u联通了。
第二关键步骤:当k执行到u,i=v,j=y,此时计算出v到y的最短路径的最短路径为v到u,再到y(此时v到u的最短路径上一步我们已经计算过来,直接利用上步结果)。
第三关键步骤:当k执行到y时,i=v,j=w,此时计算出最短路径为v到y(此时v到y的最短路径长在第二步我们已经计算出来了),再从y到w。

依次扫描每一点(k),并以该点作为中介点,计算出通过k点的其他任意两点(i,j)的最短距离,这就是floyd算法的精髓!同时也解释了为什么k点这个中介点要放在最外层循环的原因.

//多源最短路径,floyd_warshall算法,复杂度O(n^3)
//求出所有点对之间的最短路经,传入图的大小和邻接阵
//返回各点间最短距离min[]和路径pre[],pre[i][j]记录i到j最短路径上j的父结点
//可更改路权类型,路权必须非负!
#define MAXN 200
#define inf 1000000000
typedef int elem_t;

void floyd_warshall(int n,elem_t mat[][MAXN],elem_t min[][MAXN],int pre[][MAXN]){
    int i,j,k;
    for (i=0;i<n;i++)
        for (j=0;j<n;j++)
            min[i][j]=mat[i][j],pre[i][j]=(i==j)?-1:i;
    for (k=0;k<n;k++)
        for (i=0;i<n;i++)
            for (j=0;j<n;j++)
                if (min[i][k]+min[k][j]<min[i][j])
                    min[i][j]=min[i][k]+min[k][j],pre[i][j]=pre[k][j];
}
时间: 2024-12-14 16:25:25

Floyd-Warshall算法详解(转)的相关文章

最短路算法 :Bellman-ford算法 &amp; Dijkstra算法 &amp; floyd算法 &amp; SPFA算法 详解

 本人QQ :2319411771   邮箱 : [email protected] 若您发现本文有什么错误,请联系我,我会及时改正的,谢谢您的合作! 本文为原创文章,转载请注明出处 本文链接   :http://www.cnblogs.com/Yan-C/p/3916281.html . 很早就想写一下最短路的总结了,但是一直懒,就没有写,这几天又在看最短路,岁没什么长进,但还是加深了点理解. 于是就想写一个大点的总结,要写一个全的. 在本文中因为邻接表在比赛中不如前向星好写,而且前向星效率并

最短路径问题---Floyd算法详解

前言 Genius only means hard-working all one's life. Name:Willam Time:2017/3/8 1.最短路径问题介绍 问题解释: 从图中的某个顶点出发到达另外一个顶点的所经过的边的权重和最小的一条路径,称为最短路径 解决问题的算法: 迪杰斯特拉算法(Dijkstra算法) 弗洛伊德算法(Floyd算法) SPFA算法 之前已经对Dijkstra算法做了介绍(不懂的可以看这篇博客:Dijkstra算法详解),所以这篇博客打算对Floyd算法做

EM算法(3):EM算法详解

目录 EM算法(1):K-means 算法 EM算法(2):GMM训练算法 EM算法(3):EM算法详解

[转] KMP算法详解

转载自:http://www.matrix67.com/blog/archives/115 KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段.    我们这里说的KMP不是拿来放电影的(虽然我很喜欢这个软件),而是一种算法.KMP算法是拿来处理字符串匹配的.换句话说,给你两个字符串,你需要回答,B串是否是A串的子串(A串是否包含B串).比如,字符串A="I'm matrix67",字符串B="matrix",我们就说B是A的子串.

[搜索]波特词干(Porter Streamming)提取算法详解(3)

 接上 [搜索]波特词干(Porter Streamming)提取算法详解(2) 下面分为5大步骤来使用前面提到的替换条件来进行词干提取. 左边是规则,右边是提取成功或者失败的例子(用小写字母表示). 步骤1 SSES -> SS                   caresses  ->  caress IES  -> I                          ponies    ->  poni ties      ->  ti SS   -> S

KMP算法详解(图示+代码)

算法过程非常绕,不要企图一次就能看明白,多尝试就会明白一些.下面试图用比较直观的方法解释这个算法,对KMP算法的解释如下: 1. 首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较.因为B与A不匹配,所以搜索词后移一位. 2. 因为B与A不匹配,搜索词再往后移. 3. 就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止. 4. 接着比较字符串和搜索词的下一个字符,还是相同. 5. 直到字

安全体系(三)——SHA1算法详解

本文主要讲述使用SHA1算法计算信息摘要的过程. 安全体系(零)—— 加解密算法.消息摘要.消息认证技术.数字签名与公钥证书 安全体系(一)—— DES算法详解 安全体系(二)——RSA算法详解 为保证传输信息的安全,除了对信息加密外,还需要对信息进行认证.认证的目的有两:一是验证信息的发送者是合法的,二是验证信息的完整性.Hash函数就是进行信息认证的一种有效手段. 1.Hash函数和消息完整性 Hash函数也称为杂凑函数或散列函数,函数输入为一可变长度x,输出为一固定长度串,该串被称为输入x

php 二分查找法算法详解

一.概念:二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好:其缺点是要求待查表为有序表,且插入删除困难.因此,折半查找方法适用于不经常变动而查找频繁的有序列表.首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功:否则利用中间位置记录将表分成前.后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表.重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功. 二.代

【转】AC算法详解

原文转自:http://blog.csdn.net/joylnwang/article/details/6793192 AC算法是Alfred V.Aho(<编译原理>(龙书)的作者),和Margaret J.Corasick于1974年提出(与KMP算法同年)的一个经典的多模式匹配算法,可以保证对于给定的长度为n的文本,和模式集合P{p1,p2,...pm},在O(n)时间复杂度内,找到文本中的所有目标模式,而与模式集合的规模m无关.正如KMP算法在单模式匹配方面的突出贡献一样,AC算法对于

支持向量机(SVM)(五)-- SMO算法详解

一.我们先回顾下SVM问题. A.线性可分问题 1.SVM基本原理: SVM使用一种非线性映射,把原训练            数据映射到较高的维.在新的维上,搜索最佳分离超平面,两个类的数据总可以被超平面分开. 2.问题的提出: 3.如何选取最优的划分直线f(x)呢? 4.求解:凸二次规划 建立拉格朗日函数: 求偏导数: B.线性不可分问题 1.核函数 如下图:横轴上端点a和b之间红色部分里的所有点定为正类,两边的黑色部分里的点定为负类. 设: g(x)转化为f(y)=<a,y> g(x)=