斐波那契数列通项公式

1.对于斐波那契数列来说,存在通项公式,f[n]=

2、Hdu练习题1568;

大意求斐波那契数列中的某一项,n很大,只能在O(1)时间求出,并且只要前四位

当n很大时最后一项几乎为零

时间: 2024-10-27 00:47:39

斐波那契数列通项公式的相关文章

斐波那契数列(升级版)

题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数). 题目描述 请你求出第n个斐波那契数列的数mod(或%)2^31之后的值.并把它分解质因数. 输入输出格式 输入格式: n 输出格式: 把第n个斐波那契数列的数分解质因数. 输入输出样例 输入样例#1: 5 输出样例#1: 5=5 输入样例#2: 6 输出样例#2: 8=2*2*2 说明 n<=48 代码 #i

斐波那契数列(公式)

http://acm.hdu.edu.cn/showproblem.php?pid=1568 Fibonacci Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 3947    Accepted Submission(s): 1817 Problem Description 2007年到来了.经过2006年一年的修炼,数学神童zouyu终

快速幂--斐波那契数列

1)编写程序,求解a^b.其中b是正整数. 方法1. //一般求幂算法,O(r) public static long power1(int a,int r){ if(r<0) { System.out.println("r must be positive number!"); return -1; } if(r==0){ return 1; } long res=1; for(int i=1;i<=r;++i){ res*=a; } return res; } 这种使用

斐波那契数列的通项公式x+洛谷P2626x

#include<cstdio> #include<iostream> #include<cmath> using namespace std; int main() { int n; scanf("%d",&n); n--; double q=sqrt(5.0); int ans; ans=((pow((1+q)/2.0,n)/q-(pow((1-q)/2.0,n)/n))); cout<<ans<<endl; re

NYOJ 461-Fibonacci数列(四)(求斐波那契数列前4位)

题目地址:NYOJ 461 思路:斐波那契数列的通项公式为 然后下一步考虑如何产生前4位: 先看对数的性质,loga(b^c)=c*loga(b),loga(b*c)=loga(b)+loga(c);假设给出一个数10234432, 那么log10(10234432)=log10(1.0234432*10^7)[用科学记数法表示这个数]=log10(1.0234432)+7; log10(1.0234432)就是log10(10234432)的小数部分. log10(1.0234432)=0.0

斐波那契数列——母牛的故事

斐波那契数列 先普及一下基础知识 1.定义 斐波那契数列,又称黄金数列,指的是这样一个数列:0.1.1.2.3.5.8.13.21.--在数学上,斐波纳契数列以如下被以递归的方法:F0=0,F1=1,Fn=F(n-1)+F(n-2)(n>=2,n∈N*). 2.通项公式 斐波那契数列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... 如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式:显然这是一个线性递推数列.通项公式(如上,

斐波那契数列算法分析

背景: 假定你有一雄一雌一对刚出生的兔子,它们在长到一个月大小时开始交配,在第二月结束时,雌兔子产下另一对兔子,过了一个月后它们也开始繁殖,如此这般持续下去.每只雌兔在开始繁殖时每月都产下一对兔子,假定没有兔子死亡,在一年后总共会有多少对兔子? 在一月底,最初的一对兔子交配,但是还只有1对兔子:在二月底,雌兔产下一对兔子,共有2对兔子:在三月底,最老的雌兔产下第二对兔子,共有3对兔子:在四月底,最老的雌兔产下第三对兔子,两个月前生的雌兔产下一对兔子,共有5对兔子:……如此这般计算下去,兔子对数分

斐波那契数列——摘自搜狗百科

1数列公式 递推公式 斐波那契数列:0.1.1.2.3.5.8.13.21.34.55.89.144... 如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式: F(0) = 0,F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3) 通项公式 通项公式的推导方法一:利用特征方程 线性递推数列的特征方程为: X^2=X+1 解得 X1=(1+√5)/2, X2=(1-√5)/2. 斐波拉契数列则F(n)=C1*X1^n + C2*X2^n ∵F(1)=F(2

leetcode笔记:Climbing Stairs(斐波那契数列问题)

一.题目描述 You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top? 题目的大意是,已知有n阶楼梯,每次只能爬1阶或2阶楼梯,问爬到第n阶楼梯共有几种爬法-_-||.题目可以看成是,设f(n)表示爬到第n 阶楼梯的方法数,为