HDU 1069 Monkey and Banana LCS变形

点击打开链接题目链接

Monkey and Banana

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 7617    Accepted Submission(s): 3919

Problem Description

A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall be able to reach the banana
by placing one block on the top another to build a tower and climb up to get its favorite food.

The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions
of the base and the other dimension was the height.

They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly
smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn‘t be stacked.

Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.

Input

The input file will contain one or more test cases. The first line of each test case contains an integer n,

representing the number of different blocks in the following data set. The maximum value for n is 30.

Each of the next n lines contains three integers representing the values xi, yi and zi.

Input is terminated by a value of zero (0) for n.

Output

For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum height = height".

Sample Input

1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0

Sample Output

Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342

每个长方体都会有三种摆法

排序后求lcs

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std;
struct Node
{
    int a,b,c;
}node[105];
int cmp(Node x,Node y)
{
    return x.a<y.a;
}
int dp[105];
int main()
{
    int n,cas=0;
    int i,j;
    int xx[3];
    int ans;
    while(scanf("%d",&n)!=EOF&&n)
    {
        memset(node,0,sizeof(node));
        ans=0;
        for(i=1;i<=n;i++)
        {
            scanf("%d %d %d",&xx[0],&xx[1],&xx[2]);
            sort(xx,xx+3);
            node[i*3-2].a=xx[0],node[i*3-2].b=xx[1],node[i*3-2].c=xx[2];
            node[i*3-1].a=xx[0],node[i*3-1].b=xx[2],node[i*3-1].c=xx[1];
            node[i*3].a=xx[1],node[i*3].b=xx[2],node[i*3].c=xx[0];
        }
        sort(node+1,node+1+n*3,cmp);
        dp[0]=0;
        for(i=1;i<=3*n;i++)
        {
            dp[i]=node[i].c;
        }
        for(i=1;i<=3*n;i++)
        {
            int maxx=0;
            for(j=i-1;j>0;j--)
            {
                if(node[i].a>node[j].a&&node[i].b>node[j].b)
                {
                    maxx=max(maxx,dp[j]);
                }
            }
            dp[i]+=maxx;
            ans=max(ans,dp[i]);
        }
        //for(i=1;i<=3*n;i++)
           // printf("%d ",dp[i]);
        printf("Case %d: maximum height = %d\n",++cas,ans);
    }
    return 0;
}
时间: 2024-12-04 11:50:03

HDU 1069 Monkey and Banana LCS变形的相关文章

[2016-03-30][HDU][1069][Monkey and Banana]

时间:2016-03-27 15:19:40 星期日 题目编号:[2016-03-30][HDU][1069][Monkey and Banana] 题目大意:给定n种积木无限个,问这些积木最大能叠多高,上面的积木长宽必须严格小于下面的积木 分析: dp[i]表示第i个积木在顶部时候的最大高度,那么dp[i] = max(dp[i],dp[j] + h[i]);?ji能放在j上面?ji能放在j上面 初始条件就是长宽最大的高度是它自己, #include <algorithm> #include

HDU 1069 Monkey and Banana(DP 长方体堆放问题)

Monkey and Banana Problem Description A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever

HDU 1069 Monkey and Banana (动规)

Monkey and Banana Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 7248    Accepted Submission(s): 3730 Problem Description A group of researchers are designing an experiment to test the IQ of a

HDU 1069 Monkey and Banana dp 题解

HDU 1069 Monkey and Banana 题解 纵有疾风起 题目大意 一堆科学家研究猩猩的智商,给他M种长方体,每种N个.然后,将一个香蕉挂在屋顶,让猩猩通过 叠长方体来够到香蕉. 现在给你M种长方体,计算,最高能堆多高.要求位于上面的长方体的长要大于(注意不是大于等于)下面长方体的长,上面长方体的宽大于下面长方体的宽. 输入输出 开始一个数n,表示有多少种木块,木块的数量无限,然后接下来的n行,每行3个数,是木块的长宽高三个参量 输出使用这些在满足条件的情况下能够摆放的最大高度 解

HDU 1069 Monkey and Banana(二维偏序LIS的应用)

---恢复内容开始--- Monkey and Banana Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 13003    Accepted Submission(s): 6843 Problem Description A group of researchers are designing an experiment to te

HDU 1069 Monkey and Banana 基础DP

题目链接:Monkey and Banana 大意:给出n种箱子的长宽高.每种不限个数.可以堆叠.询问可以达到的最高高度是多少. 要求两个箱子堆叠的时候叠加的面.上面的面的两维长度都严格小于下面的. 简单的DP,依然有很多地发给当时没想到.比如优先级,比如这么简单粗暴的选择. 1 /* 2 大意是.给出n种箱子的长宽高.每种不限个数.可以堆叠.询问可以达到的最高高度是多少. 3 要求两个箱子堆叠的时候叠加的面.上面的面的两维长度都严格小于下面的. 4 5 样例: 6 10 20 30 7 10

hdu 1069 Monkey and Banana (结构体排序,也属于简单的dp)

Monkey and Banana Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 7770    Accepted Submission(s): 4003 Problem Description A group of researchers are designing an experiment to test the IQ of a

DP [HDU 1069] Monkey and Banana

Monkey and Banana Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 7854    Accepted Submission(s): 4051 Problem Description A group of researchers are designing an experiment to test the IQ of a

HDU 1069 Monkey and Banana DP LIS变形题

http://acm.hdu.edu.cn/showproblem.php?pid=1069 意思就是给定n种箱子,每种箱子都有无限个,每种箱子都是有三个参数(x, y, z)来确定. 你可以选任意两个参数作为长和宽,第三个是高. 然后要求把箱子搭起来,使得高度最高. 能搭的前提是下面那个箱子的长和宽都 > 上面那个箱子的. 思路: 因为同一个箱子可以产生6中不同的箱子,而每种最多选一个,因为相同的箱子最多只能搭起来一个. 那么可以把所有箱子都弄出来,排序,就是LIS的题目了. dp[i]表示以