线性排序:计数排序与基数排序

前面讨论了几种排序算法,三种O(n2)时间复杂度的排序算法:插入,选择和冒泡和两种O(nlgn)的算法:快速排序和归并排序。这几种排序数组除了归并排序需要额外的数组开销。其他几个的空间复杂度都是O(1)。通过比较交换元素完成排序.

计数排序是利用空间换取时间,增加了两个额外数组的开销,而且计数排序有一定限制:即待排数组元素的大小在0-P之间。如果P的值很大,那么额外数组的开销也会很大。

计数排序,顾名思义就是通过一个额外数组来记下待排序数组中元素出现的次数。


void countsort(int a[],int n,int p)
{
int *c = new int[p+1];
for(int i =0 ;i <= p;i++)
c[i] = 0;
for(int j = 0;j < n;j++)
{
c[a[j]] += 1; //记录A中元素出现的次数
}
for(int j = 1;j<p+1;j++)
{
c[j] = c[j-1] + c[j]; //这步操作实现了A中最大元素的计数也是最大的,A中元素越大,计数越大
}
int *b = new int[n];
for(int i = n-1;i>=0;i--)
{
b[c[a[i]]-1] = a[i];
c[a[i]]--;
}
for(int i = 0;i<n;i++)
a[i] = b[i];
}

基数排序(radix
sort)是从应用于穿卡机发展而来的,而发明这个算法的人就是IBM的始祖。基数排序是对一个数组A,数组每个元素是有d位数字,在对整个数组进行排序的时候,通过对每一位进行排序的方法。具体来说就是从低位到高位依次进行基数排序。那么得到的数组A就是有序的数组。对于每个数有k种取值可能时,总时间为O(d(n+k))。用伪代码说明:

RADIX SORT(A,d)
for i = 1 to d
do use stable sort to sort

时间: 2024-10-19 19:17:23

线性排序:计数排序与基数排序的相关文章

算法导论-- 线性时间排序(计数排序、基数排序、桶排序)

线性时间排序 前面介绍的几种排序,都是能够在复杂度nlg(n)时间内排序n个数的算法,这些算法都是通过比较来决定它们的顺序,这类算法叫做比较排序 .下面介绍的几种算法用运算去排序,且它们的复杂度是线性时间. -------------------------------------- 1.计数排序 计数排序采用的方法是:对每个元素x,去确定小于x的元素的个数,从而就可以知道元素x在输出数组中的哪个位置了. 计数排序的一个重要性质是它是稳定的,即对于相同的两个数,排序后,还会保持它们在输入数组中的

java-数组排序--计数排序、桶排序、基数排序

计数排序引入 不难发现不论是冒泡排序还是插入排序,其排序方法都是通过对每一个数进行两两比较进行排序的,这种方法称为比较排序,实际上对每个数的两两比较严重影响了其效率,理论上比较排序时间复杂度的最低下限为nlog(n),即任何比较排序的时间复杂度将不会低于nlog(n),那么有没有方法能不经过数列比较就能使数列排序呢 ,她们的时间复杂度又是多少呢??? 计数排序就是一个非比较排序的算法,一如鱼与熊掌不可兼得,她使用了牺牲空间换时间的方法,使的时间复杂度可以达到Ο(n+k) 假设我们有一个数列arr

【算法导论-学习笔记】以线性时间增长的排序——计数排序

计数排序是一种能够达到运行时间能够线性时间θ(n)的排序算法.在排序算法里算是最快的算法之一,当然,他有很强烈的前提.下面开始介绍一下技术排序(Counting Sort). 算法思想 计数排序假设n个输入元素中的每一个都是介于0到k之间的整数,此处k为某个整数.这样可以用一个数组C[0..k]来记录待排序数组里元素的数量.当k=O(n)时,计数排序的运行时间为θ(n). 注:关于C[0..k],用键值对描述的话,待排序元素是键,相同元素的个数是值.例:待排序数组<2,3 , 6,4 , 1 ,

线性排序之基数排序,桶排序,计数排序

基数排序 计数排序 桶排序 基数排序,桶排序,计数排序是三种线性排序方法,突破了比较排序的O(nlogn)的限制.但是只适用于特定的情况. 基数排序 以下为维基百科的描述: 基数排序 : 将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零.然后,从最低位开始,依次进行一次排序.这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列. 基数排序的方式可以采用LSD(Least significant digital)或MSD(Most significant digit

常见的排序算法(四)( 归并排序,计数排序 , 基数排序)

 归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用.将已有序的子序列合并,得到完全有序的序列:即先使每个子序列有序,再使子序列段间有序.若将两个有序表合并成一个有序表,称为二路归并. (如果读者不太了解什么叫分治法,可以去看看<算法导论>第一二章.) 归并过程为:比较a[i]和a[j]的大小,若a[i]≤a[j],则将第一个有序表中的元素a[i]复制到r[k]中,并令i和k分别加上1:否则将第

有Leetcode中一道题,谈桶排序,基数排序和计数排序

几种非比较排序 在LeetCode中有个题目叫Maximum Gap,是求一个非排序的正数数列中按顺序排列后的最大间隔.这个题用桶排序和基数排序都可以实现.下面说一下桶排序.基数排序和计数排序这三种非比较排序. 桶排序 这种排序的主要思想是,把数列分配到多个桶中,然后再在各个桶中使用排序算法进行排序,当然也可以继续使用桶排序. 假设数组的最大值是A,最小值是B,长度是L,则每个桶的大小可以是S=Max(1,(A-B)/(L-1))则可以分为(A-B)/S+1个桶. 对于数列中的数字x,用(x-B

计数排序和基数排序的实现

计数排序 计数排序的原理 设被排序的数组为A,排序后存储到B,C为临时数组.所谓计数,首先是通过一个数组C[i]计算大小等于i的元素个数,此过程只需要一次循环遍历就可以:在此基础上,计算小于或者等于i的元素个数,也是一重循环就完成.下一步是关键:逆序循环,从length[A]到1,将A[i]放到B中第C[A[i]]个位置上.原理是:C[A[i]]表示小于等于a[i]的元素个数,正好是A[i]排序后应该在的位置.而且从length[A]到1逆序循环,可以保证相同元素间的相对顺序不变,这也是计数排序

冒泡排序,快速排序,归并排序,插入排序,希尔排序,堆排序,计数排序,桶排序,基数排序

选择排序,冒泡排序,快速排序,归并排序,插入排序,希尔排序,计数排序,桶排序,基数排序 以上是一些常用的排序算法. 选择排序 for(int i = 0; i < n; i++) { int minval = a[i]; int minid = i; for (int j = i+1; j < n; j++) { if (a[j] < minval) { minid = j; minval = a[j]; } } swap(a[i], a[minid]); } 最简单的就是选择排序,就是

算法学习-02(希尔排序,计数排序,桶排序,基数排序)

希尔排序 # 希尔排序 # 希尔排序是对插入排序的升级改造 # 它的大致流程是 # 1.将长度为n的序列 分为d = n//2组 # 2.使每一组变的有序 # 3.将序列分为 d1 = d // 2 组 # 4.将每一组变的有序 # 5.直到最后 d 小于等于 0 def inster_sort_gap(li,gap): for i in range(gap,len(li)): tmp = li[i] j = i - gap while j >= 0 and tmp > li[j]: li[j