9.2---机器人走方格(CC150)

这题就是dp的一般题目

    public static int countWays(int x, int y){

        if( x < 0 || y < 0) return -1;

        int[][] dp = new int[x][y];
        for(int i = 0; i < x; i++){
            dp[i][0] = 1;
        }
        for(int j = 0; j < y; j++){
            dp[0][j] = 1;
        }
        for(int i = 1; i < x; i++){
            for(int j = 1; j < y; j++){
                dp[i][j] = dp[i-1][j] + dp[i][j-1];
            }
        }
        return dp[x-1][y-1];

    }
时间: 2024-11-07 23:06:21

9.2---机器人走方格(CC150)的相关文章

1122 机器人走方格 V4

1122 机器人走方格 V4 基准时间限制:1 秒 空间限制:131072 KB 四个机器人a b c d,在2 * 2的方格里,一开始四个机器人分别站在4个格子上,每一步机器人可以往临近的一个格子移动或留在原地(同一个格子可以有多个机器人停留),经过n步后有多少种不同的走法,使得每个毯子上都有1机器人停留.由于方法数量巨大,输出 Mod 10^9 + 7的结果. Input 输入1个数N(0 <= N <= 10^9) Output 输出走法的数量 Mod 10^9 + 7 Input示例

1120 机器人走方格 V3

1120 机器人走方格 V3 基准时间限制:1 秒 空间限制:131072 KB N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走.并要求只能在这条线的上面或下面走,不能穿越这条线,有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10007的结果. Input 输入一个数N(2 <= N <= 10^9). Output 输出走法的数量 Mod 10007. Input示例 4 Output示例 10 思路:这个在对角线的上方,就可以转换为,火车进

51nod 1118 机器人走方格 (小数据用dp)

1118 机器人走方格 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 取消关注 M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果. Input 第1行,2个数M,N,中间用空格隔开.(2 <= m,n <= 1000) Output 输出走法的数量. Input示例 2 3 Output示例 3 设dp[i][j]表示走到第i行第j列有多少种走法.状态转移

1119 机器人走方格 V2

1119 机器人走方格 V2 基准时间限制:1 秒 空间限制:131072 KB M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果. Input 第1行,2个数M,N,中间用空格隔开.(2 <= m,n <= 1000000) Output 输出走法的数量 Mod 10^9 + 7. Input示例 2 3 Output示例 3思路:打个表找个规律,然后发现是组合数,然后取模费马小定理. 1 #in

51nod 1119 机器人走方格 V2 (组合数学+逆元)

1119 机器人走方格 V2 基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题 收藏 关注 取消关注 M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果. Input 第1行,2个数M,N,中间用空格隔开.(2 <= m,n <= 1000000) Output 输出走法的数量 Mod 10^9 + 7. Input示例 2 3 Output示例 3 分析:因为只能向

1119 机器人走方格 V2(组合)

1119 机器人走方格 V2 基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题 M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果. Input 第1行,2个数M,N,中间用空格隔开.(2 <= m,n <= 1000000) Output 输出走法的数量 Mod 10^9 + 7. Input示例 2 3 Output示例 3 //挺懵逼的,虽然看出动规后是个杨辉三

51_1118 机器人走方格(组合+乘法逆元)

这道题要注意的是: 当单纯的用组合累乘的话 1000!即使long long也会溢出 , 所以只能乘一下, mod一下, 但是这样分子分母算出来后, 分子/分母 肯定就已经不是答案(因为 分子%mod / 分母%mod != ans%mod ), 此时, 就要用到乘法逆元. ax ≡ 1(mod m) , 则 t1 * x * t2 mod m = t1 -> t1 / t2 = t1* x mod m (将除法转换成乘法, 保证 t1/t2 的结果为 ans%mod ) 1118 机器人走方格

机器人走方格 V3

1120 . 机器人走方格 V3 基准时间限制:1 秒 空间限制:65536 KB 分值: 160 N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走.并要求只能在这条线的上面或下面走,不能穿越这条线,有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10007的结果. Input输入一个数N(2 <= N <= 10^9). Output输出走法的数量 Mod 10007. Input 示例4 Output 示例10思路:实际是本质就是,n个0,n个

5.3(2)----机器人走方格2(CC150)

这道题只需要把障碍点都设为0就可以了. public static int countWays(int[][] map,int x, int y){ if( x < 0 || y < 0) return -1; int[][] dp = new int[x][y]; for(int i = 0; i < x; i++){ if(map[i][0] == 1){ dp[i][0] = 1; } else{ break; } } for(int j = 0; j < y; j++){

51nod 1118 机器人走方格

基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果. Input 第1行,2个数M,N,中间用空格隔开.(2 <= m,n <= 1000) Output 输出走法的数量. Input示例 2 3 Output示例 3 棋盘dp屠龙宝刀点击就送 #include <cstdio> int dp[1001][100