P2258 子矩阵

题目描述

给出如下定义:

  1. 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵。

例如,下面左图中选取第2、4行和第2、4、5列交叉位置的元素得到一个2*3的子矩阵如右图所示。

9 3 3 3 9

9 4 8 7 4

1 7 4 6 6

6 8 5 6 9

7 4 5 6 1

的其中一个2*3的子矩阵是

4 7 4

8 6 9

  1. 相邻的元素:矩阵中的某个元素与其上下左右四个元素(如果存在的话)是相邻的。
  2. 矩阵的分值:矩阵中每一对相邻元素之差的绝对值之和。

本题任务:给定一个n行m列的正整数矩阵,请你从这个矩阵中选出一个r行c列的子矩阵,使得这个子矩阵的分值最小,并输出这个分值。

(本题目为2014NOIP普及T4)

输入输出格式

输入格式:

第一行包含用空格隔开的四个整数n,m,r,c,意义如问题描述中所述,每两个整数之间用一个空格隔开。

接下来的n行,每行包含m个用空格隔开的整数,用来表示问题描述中那个n行m列的矩阵。

输出格式:

输出共1行,包含1个整数,表示满足题目描述的子矩阵的最小分值。

输入输出样例

输入样例#1:

5 5 2 3
9 3 3 3 9
9 4 8 7 4
1 7 4 6 6
6 8 5 6 9
7 4 5 6 1

输出样例#1:

6

输入样例#2:

7 7 3 3
7 7 7 6 2 10 5
5 8 8 2 1 6 2
2 9 5 5 6 1 7
7 9 3 6 1 7 8
1 9 1 4 7 8 8
10 5 9 1 1 8 10
1 3 1 5 4 8 6

输出样例#2:

16

说明

【输入输出样例1说明】

该矩阵中分值最小的2行3列的子矩阵由原矩阵的第4行、第5行与第1列、第3列、第4列交叉位置的元素组成,为

6 5 6

7 5 6

,其分值为

|6−5| + |5−6| + |7−5| + |5−6| + |6−7| + |5−5| + |6−6| =6。

【输入输出样例2说明】

该矩阵中分值最小的3行3列的子矩阵由原矩阵的第4行、第5行、第6行与第2列、第6列、第7列交叉位置的元素组成,选取的分值最小的子矩阵为

9 7 8 9 8 8 5 8 10

【数据说明】

对于50%的数据,1 ≤ n ≤ 12,1 ≤ m ≤ 12,矩阵中的每个元素1 ≤ a[i][j] ≤ 20;

对于100%的数据,1 ≤ n ≤ 16,1 ≤ m ≤ 16,矩阵中的每个元素1 ≤ a[i][j] ≤ 1,000,

1 ≤ r ≤ n,1 ≤ c ≤ m。

一道改变人生观的题

首先暴力搜索行

然后dp列

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<cmath>
 5 #include<cstdlib>
 6 using namespace std;
 7 int n,m,r,c,ans=0x7fff;
 8 int a[17][17],dp[17][17],how[17];
 9 void dpans()
10 {
11     memset(dp,0,sizeof(dp));
12     int hangcha=0,liecha=0;
13     for(int i=1;i<=c;i++)
14     {
15         for(int j=0;j<m;j++)
16         {
17             dp[i][j]=1e9;hangcha=0;
18             for(int k=1;k<r;k++)
19
20             hangcha+=abs(a[how[k]][j]-a[how[k-1]][j]);
21
22             if(i<2)
23             {
24                 dp[i][j]=hangcha;
25                 if(i==c)
26                 ans=min(ans,dp[i][j]);
27                 continue;
28             }
29             for(int k=0;k<j;k++)
30             {
31                 liecha=0;
32                 for(int l=0;l<r;l++)
33                 liecha+=abs(a[how[l]][k]-a[how[l]][j]);
34                 if(i<2)liecha=0;
35                 if(dp[i-1][k]+hangcha+liecha<dp[i][j])
36                 dp[i][j]=dp[i-1][k]+hangcha+liecha;
37             }
38             if(i==c)
39             ans=min(ans,dp[i][j]);
40         }
41     }
42 }
43 void dfs(int x,int num)
44 {
45     if(num>r)return ;
46     if(x==n)
47     {
48         if(num<r)return ;
49         dpans();
50         return ;
51     }
52     how[num]=x;
53     dfs(x+1,num+1);
54     dfs(x+1,num);
55 }
56 int main()
57 {
58     scanf("%d%d%d%d",&n,&m,&r,&c);
59     for(int i=0;i<n;i++)
60         for(int j=0;j<m;j++)
61             scanf("%d",&a[i][j]);
62     dfs(0,0);
63     printf("%d",ans);
64     return 0;
65 }
时间: 2024-10-14 00:55:26

P2258 子矩阵的相关文章

P2258 子矩阵——搜索+dp

P2258 子矩阵 二进制枚举套二进制枚举能过多一半的点: 我们只需要优化一下第二个二进制枚举的部分: 首先我们先枚举选哪几行,再预处理我们需要的差值,上下,左右: sum_shang,sum_heng 然后DP查找最小值 dp[i][j]表示前i列已经选了j列: #include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int maxn=20; int n,m,r

luogu P2258 子矩阵 |动态规划

题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第22.44行和第22.44.55列交叉位置的元素得到一个2 \times 32×3的子矩阵如右图所示. 9 3 3 3 9 9 4 8 7 4 1 7 4 6 6 6 8 5 6 9 7 4 5 6 1 的其中一个2 \times 32×3的子矩阵是 4 7 4 8 6 9 相邻的元素:矩阵中的某个元素与其上下左右四个元素(如果存在的话

【Luogu】P2258子矩阵(状态压缩,DP)

233今天蒟蒻我连文化课都没听光想着这个了 然后我调了一下午终于过了!!! 一看数据范围似乎是状压,然而216等于65536.开一个65536*65536的二维数组似乎不太现实. 所以Rqy在四月还是几月给我们讲这道题的时候说要半DFS半DP,时间复杂度O(2n*n3) 怎么个半DFS半DP法呢? 其实我没DFS.所以这个问题不重要. 我真的没用DFS.枚举从1到2n-1的所有集合,把二进制数中1的个数不等于r的都筛掉.然后对于每个状态,预处理出每一列内部的代价,预处理出列与列之间的代价,然后进

【题解】 P2258 子矩阵

在矩阵中求解最优情况,其中$n \leq 16$ 假设现在已经得到保留的行与列的编号,递推矩阵分值的复杂度是$O(n^2)$遍历一遍就ok 50pts 假设行列全部枚举全排列的话,枚举次数在最坏情况下是$(C_{12}^6)^2=924^2$,在加上求分值的复杂度则总复杂度还是勉强可以接受的? 直接看100pts解法,仍然枚举一次行的全排列,复杂度是$O(C_m^c)$,这个时候我们得到的其实是一行数列,数列上的每个数有选择和不选择两种状态,选择每个数会增加分值,分别是: - 自身的分数(该列上

NOIP 普及组 T4 子矩阵(--洛谷P2258)

题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4.5列交叉位置的元素得到一个2*3的子矩阵如右图所示. 9 3 3 3 9 9 4 8 7 4 1 7 4 6 6 6 8 5 6 9 7 4 5 6 1 的其中一个2*3的子矩阵是 4 7 4 8 6 9 相邻的元素:矩阵中的某个元素与其上下左右四个元素(如果存在的话)是相邻的. 矩阵的分值:矩阵中每一对相邻元素之差

BZOJ 1084 最大子矩阵 终于过了

一开始看到这道题,由于觉得m <= 2, 所以觉得这是道水题,回去后想了一下.在晚上来机房的时候已经想出来了,但是我必须承认细节决定成败.远在一个小时前我就已经把算法的主体都写好了,但是就是一直WA,为什么就是各种粗心,真心想捏死自己.一个小时就这么白白浪费了.我希望明天的我能变得强大一点.在有了今日惨痛的教训之后. 这道题并不难.用d[i][j][k] 来表示状态.i表示第几行,j表示之前取了多少个矩阵,k表示上一行的状态.即上一行的矩阵取法.如果k == 0 那么没有一个矩阵延伸到上一行,如

poj1050查找最大子矩阵和

题目: To the Max Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 48507   Accepted: 25662 Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater locate

Codevs 1159 最大全0子矩阵 悬线法!!!!

1159 最大全0子矩阵 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 在一个0,1方阵中找出其中最大的全0子矩阵,所谓最大是指O的个数最多. 输入描述 Input Description 输入文件第一行为整数N,其中1<=N<=2000,为方阵的大小,紧接着N行每行均有N个0或1,相邻两数间严格用一个空格隔开. 输出描述 Output Description 输出文件仅一行包含一个整数表示要求的最大的全零子矩阵中零的个数.

51nod 1051 求最大子矩阵和

题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1051 1051 最大子矩阵和 基准时间限制:2 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 一个M*N的矩阵,找到此矩阵的一个子矩阵,并且这个子矩阵的元素的和是最大的,输出这个最大的值. 例如:3*3的矩阵: -1 3 -1 2 -1 3 -3 1 2 和最大的子矩阵是: 3 -1 -1 3 1 2 Input 第1行:M和N,中间用空格