艰难的写上一篇,小学期太累了,,,很难坚持刷
#include <iostream> #include <cmath> #include <cstring> #include <cstdio> #include <cstdlib> #include <algorithm> using namespace std; int m,n; int num; struct Grid { int x,y; }grid[5555]; int cmp(const void* a,const void* b) { Grid* one; Grid* two; one=(Grid* ) a; two=(Grid* ) b; return ((one->x)==(two->x))?(one->y)-(two->y):(one->x)-(two->x); } int getstep(Grid grs,int dx,int dy) { int step=0; while(grs.x<=n&&grs.x>=1 &&grs.y>=1&&grs.y<=m) { if(!bsearch(&grs,grid,num,sizeof(Grid),cmp)) { step=0; break; } else { grs.x+=dx,grs.y+=dy; step++; } } return step; } int main() { //ios::sync_with_stdio(false); //freopen("/home/rainto96/in.txt","r",stdin); while(scanf("%d%d",&m,&n)!=EOF) { scanf("%d",&num); for(int i=0;i<=num;i++) { int xx,yy; scanf("%d%d",&xx,&yy); grid[i].x=yy,grid[i].y=xx; } qsort(grid,num,sizeof(Grid),cmp); int maxn=2; for(int i=0;i<num-1;i++) { for(int j=i+1;j<num;j++) { int dx,dy,px,py; dx=grid[j].x-grid[i].x; dy=grid[j].y-grid[i].y; px=grid[i].x-dx; py=grid[i].y-dy; if(py>=1&&py<=m&&px>=1&&px<=n) continue; if(grid[i].x+maxn*dx>n) break; py = grid[i].y + maxn * dy; if ( py > m || py < 1) continue; int step=getstep(grid[i],dx,dy); maxn=max(maxn,step); } } maxn=(maxn==2?0:maxn); printf("%d\n",maxn); } return 0; }
学会了二维的二分,其实就一句话
用 法: void *bsearch(const void *key, const void *base, size_t nelem, size_t width, int(*fcmp)(const void *, const *));
语法:
#include <stdlib.h> void *bsearch( const void *key, const void *buf, size_t num, size_t size, int (*compare)(const void *, const void *) );
参数:第一个:要查找的关键字。第二个:要查找的数组。第三个:指定数组中元素的数目。第四个:每个元素的长度(以字符为单位)。第五个:指向比较函数的指针。
功能: 函数用折半查找法在从数组元素buf[0]到buf[num-1] 匹配参数key。如果函数compare 的第一个参数小于第二个参数,返回负值;如果等于返回零值;如果大于返回正值。数组buf
中的元素应以升序排列。函数bsearch()的返回值是指向匹配项,如果没有发现匹配项,返回NULL
这个问题看起来很复杂,其实目的很简单:帮助农民找到为害最大的青蛙。也就是要找到
一条穿越稻田的青蛙路径,这个路径上被踩踏的水稻不少于其他任何青蛙路径上被踩踏的水
稻数。当然,整个稻田中也可能根本就不存在青蛙路径。问题的关键是:找到穿越稻田的全
部青蛙路径。任何一条穿越稻田的青蛙路径L,至少包括3 棵被踩踏的水稻。假设其中前两
棵被踩踏的水稻分别是(X1,Y1)、(X2,Y2),那么:
令dx=X2-X1、dy=Y2-Y1;X0=X1-dx、Y0=Y1- dy;X3=X2 + dx、Y3=Y2 + dy
(X0,Y0)位于稻田之外,青蛙从该位置经一跳后进入稻田、踩踏位置(X1,Y1)上的水稻
(X3,Y3)位于稻田之内,该位置是L 上第3 棵被青蛙踩踏的水稻
Xi=X0 + idx、Yi=Y1 + idy(i3),如果(Xi,Yi)位于稻田之内,则(Xi,Yi)上的水稻必被
青蛙踩踏
根据上述规则,只要知道一条青蛙路径上的前两棵被踩踏的水稻,就可以找到该路径上其
他的水稻。为了找到全部的青蛙路径,只要从被踩踏的水稻中,任取两棵水稻(X1,Y1)、(X2,
Y2),判断(X1,Y1)、(X2,Y2)是否能够作为一条青蛙路径上最先被踩踏的两颗水稻。
解决方案
这个问题的描述中,最基本的元素是被踩踏的水稻。在程序中要选择一个合适的数据结构,
来表达这个基本元素。这个数据结构是否合适的标准是:在程序中要表达这个元素时,能否
用一个单词或者短语,即用一个变量来表示。
struct PLANT {//描述一棵被踩踏的水稻
int x; //水稻的行号
int y; //水稻的列号
}
这个问题的主要计算是:从被踩踏的水稻中选择两棵(X1,Y1)、(X2,Y2)。判断它们是否
能够作为一条青蛙路径上最先被踩踏的两颗水稻。(X1,Y1)、(X2,Y2)唯一确定了蛙跳的方
向和步长,从(X2,Y2)开始,沿着这个方向和步长在稻田内走。每走一步,判断所到达位置
上(X,Y)的水稻是否被踩踏,直到走出稻田为止。如果在某一步上,(X,Y)没有被踩踏,
则表明(X1,Y1)、(X2,Y2)是一条青蛙路径上最先被踩踏的两颗水稻的假设不成立。这个判
断的算法在问题求解过程中要反复使用,它的效率成为决定整个计算效率的关键。
用一个PLANT 型的数组plants[5001]表示全部被踩踏的水稻
将plants 中的元素按照行/列序号的升序(或者降序)排列
采用二分法查找plants 中是否有值为(X,Y)的元素:将(X,Y)与plants 中间的元素比较,
(1)相等,表明找到了元素;(2)比plants 中间元素的小,继续在plants 的前半部寻找;(3)
比plants 中间元素的大,继续在plants 的后半部寻找。
采用上述方法判断每走一步所到达位置上(X,Y)的水稻是否被踩踏,最多只要比较Log2N,
其中N 是稻田中被踩踏水稻的总量。
POJ1054 The Troublesome Frog [dp]