Balance POJ - 1837 地推

Gigel has a strange "balance" and he wants to poise it. Actually, the device is different from any other ordinary balance. 
It orders two arms of negligible weight and each arm‘s length is 15. Some hooks are attached to these arms and Gigel wants to hang up some weights from his collection of G weights (1 <= G <= 20) knowing that these weights have distinct values in the range 1..25. Gigel may droop any weight of any hook but he is forced to use all the weights. 
Finally, Gigel managed to balance the device using the experience he gained at the National Olympiad in Informatics. Now he would like to know in how many ways the device can be balanced.

Knowing the repartition of the hooks and the set of the weights write a program that calculates the number of possibilities to balance the device. 
It is guaranteed that will exist at least one solution for each test case at the evaluation.

Input

The input has the following structure: 
? the first line contains the number C (2 <= C <= 20) and the number G (2 <= G <= 20); 
? the next line contains C integer numbers (these numbers are also distinct and sorted in ascending order) in the range -15..15 representing the repartition of the hooks; each number represents the position relative to the center of the balance on the X axis (when no weights are attached the device is balanced and lined up to the X axis; the absolute value of the distances represents the distance between the hook and the balance center and the sign of the numbers determines the arm of the balance to which the hook is attached: ‘-‘ for the left arm and ‘+‘ for the right arm); 
? on the next line there are G natural, distinct and sorted in ascending order numbers in the range 1..25 representing the weights‘ values.

Output

The output contains the number M representing the number of possibilities to poise the balance.

Sample Input

2 4
-2 3
3 4 5 8

Sample Output

2

递推,注意到砝码一边的最大重量不超过7500,讲7500设为新的0点,枚举所有物品选择和节点选择,注意剪枝。。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<sstream>
#include<algorithm>
#include<queue>
#include<vector>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<memory>
#include<bitset>
#include<string>
#include<functional>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
const int MAXN = 8000 * 2;

#define INF 0x3f3f3f3f

//0 1 背包
/*
dp[i][MAXN]
*/
int dp[25][MAXN];
int x[25], w[25];
int solve(int c, int g)
{
    for (int i = 1; i <= g; i++)
    {
        for (int v = 0; v < MAXN; v++)
        {
            if (dp[i - 1][v])
            {
                for (int j = 1; j <= c; j++)
                {
                    dp[i][v + w[i] * x[j]] += dp[i - 1][v];
                }
            }
        }
    }
    return dp[g][7500];
}
int main()
{
    int c, g;
    scanf("%d%d", &c, &g);
    memset(dp, 0, sizeof(dp));
    for (int i = 1; i <= c; i++)
        scanf("%d", &x[i]);
    for (int j = 1; j <= g; j++)
        scanf("%d", &w[j]);
    /*for (int i = 0; i < c; i++)
    {
        for (int j = 0; j < g; j++)
        {
            dp[0][x[i] * w[j] + 7500]++;
        }
    }*/
    dp[0][7500] = 1;
    printf("%d\n", solve(c, g));
    return 0;
}
时间: 2024-11-05 12:20:28

Balance POJ - 1837 地推的相关文章

POJ 1837 Balance

题意:给你C个挂钩,W个钩码,要你能使一个天平平衡 数据解释: 2 4 -2 3 3 4 5 8 以原点为支点,那么-2代表支点左边2处有一个钩码,同理3代表右边的点 所以案例数据有一个成立的例子是(3+5)*3=(4+8)*2或是(3+4+5)*2=8*3(力臂平衡) 有2种情况所以输出2: 思路:这个如果不是按照题目的分类说是DP我还想不到这个思路,我感觉我进步挺大了,能独立推出转移方程了. 首先我们看这道题首先是要求力平衡,那么一个限制是重量.与力相关的有钩码与挂钩的位置.显然,钩码可以放

poj 1837 Balance (dp,01背包)

链接:poj 1837 题意:有一个天平,天平左右两边各有若干个钩子,总共有C个钩子,有G个钩码, 求将钩码挂到钩子上使天平平衡的方法的总数.其中可以把天枰看做一个以x轴0点作为平衡点的横轴 分析:力臂=重量 *臂长 = g[i]*c[j] 当平衡度k=0时,说明天枰达到平衡,k>0,说明天枰倾向右边(x轴右半轴),k<0则左倾 因此可以定义一个 状态数组dp[i][k],意为在挂满前i个钩码时,平衡度为k的挂法的数量. 由于距离c[i]的范围是-15~15,钩码重量的范围是1~25,钩码数量

poj 1837

Balance Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 10307   Accepted: 6377 Description Gigel has a strange "balance" and he wants to poise it. Actually, the device is different from any other ordinary balance. It orders two arms

poj 1837 01背包

Balance Time Limit: 1000 MS Memory Limit: 30000 KB 64-bit integer IO format: %I64d , %I64u Java class name: Main [Submit] [Status] [Discuss] Description Gigel has a strange "balance" and he wants to poise it. Actually, the device is different fr

poj 1837 Balance(背包)

题目链接:http://poj.org/problem?id=1837 Balance Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 10983   Accepted: 6824 Description Gigel has a strange "balance" and he wants to poise it. Actually, the device is different from any other

POJ 1837 Balance (多重背包计数)

Balance Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 11706   Accepted: 7305 Description Gigel has a strange "balance" and he wants to poise it. Actually, the device is different from any other ordinary balance. It orders two arms

poj 1837 Balance 动态规划

题目链接:http://poj.org/problem?id=1837 使用迭代器对STL容器进行遍历的方法: for(set<int>::iterator it = check.begin(); it != check.end(); it++) { //...*it }   本题 a[]存挂钩位置 b[]存物品质量 把挂在天平左边的物品的质量视为负数 反之为正数 总质量的极限为20件重25的物品都挂在15的天平挂钩处 即7500 dp[i][j]表示前i件物品总质量为(j-10000)时的挂

poj 1837 天平Balance

http://poj.org/problem?id=1837 题意:现有一个天平,可以视为x坐标轴,负半轴为天平左边,右半轴为天平右边, 现在天平上有c个挂钩,让你挂上g个的砝码,问有几种挂法使得天平平衡, 2 <= C <= 20 :   2 <= G <= 20  : 挂钩坐标[-15,15]  ;   砝码重量[1,25]  ; 思路:试想,每次挂上一个砝码   天平的平衡度  是受  前一个砝码的位置  的影响   故   可以考虑用动态规划 可不可以把 第一个 砝码挂在不

POJ 1837 Balance DP

Balance Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 10299   Accepted: 6372 Description Gigel has a strange "balance" and he wants to poise it. Actually, the device is different from any other ordinary balance. It orders two arms