转载自:http://www.cnblogs.com/huxi2b/p/4583249.html 供参考
本文分析的Kafka代码为kafka-0.8.2.1。另外,由于Kafka目前提供了两套Producer代码,一套是Scala版的旧版本;一套是Java版的新版本。虽然Kafka社区极力推荐大家使用Java版本的producer,但目前很多已有的程序还是调用了Scala版的API。今天我们就分析一下旧版producer的代码。
producer还分为同步和异步模式,由属性producer.type指定,默认是sync,即同步发送模式。本文主要关注于同步发送的代码走读。下面以console-producer为例——console producer是Kafka自带的一个工具,它可以很方便地以键盘输入的方式接收消息并发送给指定的topic,非常适合作为我们学习的一个起点。
一、运行console-producer命令
我们的第一步是要启动一个console-producer实例。最简单的方式就是使用下面的命令:
除了绝对必要的topic, borker-list属性,我们并没有指定其他的参数。这几乎是最简单的启动方式了。
【刊误】console-producer如果不指定--sync默认应该是异步发送消息而非同步的,笔者之前说错了,所以命令应该调整为:
bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test-topic --sync
二、构建Producer配置信息
producer的第一步就是要构造producer的配置信息,比如metadata.broker.list和request.required.acks等,完整的参数列表可以查询Kafka官网,这些参数部分可以由启动console-producer时候指定,部分是有默认值的。举例来说,对于metadata.broker.list这样必须要指定的参数,在调用console-producer时候就必须传入broker-list的值给它赋值;而像request.required.acks这样的参数,虽然从名称上来看也是必要参数,但console-producer代码中提供了默认值,因此我们可以选择不显式提供request-required-acks的值,如下面代码所示:
1 2 3 4 5 |
|
三、构建JVM Shutdownhook
console-producer代码此处添加了一个JVM关闭钩子,用于确保producer的关闭。
四、发送消息
代码此处循环从键盘中接收一行文本作为消息发送。需要注意的时,默认情况下构造的消息是没有key的。由于是同步发送,每条消息都会在Producer的send方法中调用DefaultEventHandler的send方法进行发送,以下代码是ConsoleProducer.scala中消息发送部分代码:
1 2 3 4 5 |
|
下面代码是Producer.scala中的发送方法:
1 2 3 4 5 6 7 8 9 10 11 |
|
由上面的分析可以看出,真正的发送逻辑其实是由DefaultEventHandler类的handle方法来完成的。下面我们重点分析一下这个类的代码结构。
五、DefaultEventHandler与消息发送
这个类的handler方法可以同时支持同步和异步的消息发送。我们这里只考虑同步的代码路径。下面是消息发送的完整流程图:
以下代码是发送消息的核心逻辑:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
|
下面具体说说各个子模块的代码逻辑:
5.1 serialize方法
该方法虽然是叫序列化,但其实主要的作用就是将字节数组格式的消息体转成KeyedMessage格式。由于默认情况下我们没有指定key,因此在构造KeyedMessage时就只需要指定消息体就好了,如下面的代码所示:
1 2 3 4 5 6 |
|
构建完KeyedMessage之后返回对应的消息集合即可。
5.2 更新topic元数据信息
Kafka是如何刷新某些topic的元数据信息的呢?它会向任意一个broker发送TopicMetadataRequest请求(TopicMetadataRequest是唯一一个能发给任意broker的请求API),使用获取的响应来更新连入broker的缓存。TopicMetadataRequest的响应信息包括对应topic的Leader、AR、ISR信息。
具体到代码而言,BrokerPartitionInfo的updateInfo方法就是做这件事情的,这个方法代码不多,我们逐行分析下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
|
关于上面代码中的最后一行, 我们需要着重说一下。每个producer应用程序都会保存一个producer池对象来缓存每个broker上对应的同步producer实例。具体格式为brokerId -> SyncProducer。SyncProducer表示一个同步producer,其主要的方法是send,支持两种请求的发送:ProducerRequest和TopicMetadataRequest。前者是发送消息的请求,后者是更新topic元数据信息的请求。为什么需要这份缓存呢?我们知道,每个topic分区都应该有一个leader副本在某个broker上,而只有leader副本才能接收客户端发来的读写消息请求。对producer而言,即只有这个leader副本所在的broker才能接收ProducerRequest请求。在发送消息时候,我们会首先找出这个消息要发给哪个topic,然后发送更新topic元数据请求给任意broker去获取最新的元数据信息——这部分信息中比较重要的就是要获取topic各个分区的leader副本都在哪些broker上,这样我们稍后会创建连接那些broker的阻塞通道(blocking channel)去实现真正的消息发送。Kafka目前的做法就是重建所有topic分区的leader副本所属broker上对应的SyncProducer实例——虽然我觉得这样实现有线没有必要,只更新消息所属分区的缓存信息应该就够了(当然,这只是我的观点,如果有不同意见欢迎拍砖)。以下是更新producer缓存的一些关键代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|
前面说了,如果只发送一条消息的话,其实真正需要更新的分区leader副本所述broker对应的SyncProducer实例只有一个,但目前的代码中会更新所有分区,不知道Java版本的producer是否也是这样实现,这需要后面继续调研!
5.3 发送消息
更新完topic元数据信息之后就该真正地发送消息了,这是由dispatchSerializedData方法来实现的。该方法接收一组KeyedMessage消息集合并返回发送失败的消息集合。如果返回None自然表示发送成功。该方法主要的逻辑如下图所示:
为了更加直观地说明上图是如何完成消息发送的,我们先对Kafka环境做一些基本的假设。假设我们的Kafka环境有5个broker,ID分别为0, 1, 2, 3, 4。我们还定义了一个topic,名字是test-topic(其实名字不重要)。该topic有3个分区,分区ID分别是0, 1, 2,并假设每个分区的leader replica都是存在的。现在假设leader与broker的对应关系假定如下:
Topic | 分区 | Leader副本所在的broker ID |
test-topic | P0 | 0 |
test-topic | P1 | 1 |
test-topic | P2 | 3 |
如果基于这样的配置,假定我们使用producer API一次性发送4条消息,分别是M1,M2, M3和M4。现在就可以开始分析代码了,首先从消息分组及整理开始:
5.3.1 partitionAndCollate方法
了解一个方法最简单的方式就是学习它的输入,分析它的输出。该方法接收一组待发送的消息集合——用Scala表示的话就是Seq[KeyedMessage[K, Message]],在我们的例子中很显然这个集合中有4条消息。这个方法的输出比较复杂,完整的写法是:
Option[Map[Int, Map[TopicAndPartition, Seq[KeyedMessage[K, Message]]]]]
熟悉Scala语法的朋友可能会知道,这个返回值类型表示该方法可能会返回None——这表示producer代码没法对你要发送的消息按照broker进行分组或在分组过程中遇到了严重的错误,只能返回None由上层代码来处理这种情况。如果确实返回了值,这个值长的是什么样子呢?拿我们的例子来说,假定每条消息去被发送到的分区如下:(这里的对应关系是假设的,其实在partitionAndCollate方法中会为每条消息都分配它要去的分区!)
消息 | 要被发送到的分区ID | 该分区leader副本所在broker ID |
M1 | P0 | 0 |
M2 | P0 | 0 |
M3 | P1 | 1 |
M4 | P2 | 3 |
那么这个方法返回的结果就是:
{
0 - > {test-topic + P0 -> {M1, M2}},
1 -> {test-topic + P1 -> {M3}},
2 -> {test-topic + P2 -> {M4}}
}
该方法的效果就是将所有待发送的消息首先按照broker进行分组,然后再按照分区进行整理。
当然了,上面我们假定了每条消息要去的分区,其实这也是在partitionAndCollate方法中被计算出来的。主要的逻辑是:
1. 首先判断每条消息的分区key是否指定,如果指定了调用默认的分区类Partitioner的partition计算目标分区就是了。
2. 如果没有指定key,就像默认使用console-producer的情况,代码会首先从缓存中判断以前是否保存该topic的信息——即该topic下所有没有key的消息默认会被发送到同一个分区下。如果存在直接找出来就好了;否则随机挑选一个返回并把它加入到缓存中,如下面代码所示:
1 2 3 |
|
5.3.2 groupMessagesToSet方法
通过上一步中将待发送消息集合按照broker和topic分区进行分组,Kafka对要发送的消息进行了分区。该操作完成之后代码就需要遍历整理过的消息数据,获取消息数据中每个broker对应的分区消息映射,也就是类似于{test-topic + P0 -> {M1, M2}}这样的数据。然后将每个映射转换为这样的格式:
{(topic + 分区, ByteBufferMessageSet(message), (topic + 分区, ByteBufferMessage(message) }。还是以我们的例子而言,经过groupMessageToSet之后,每个broker对应的数据变为:
{
(topic + P0, ByteBufferMessageSet(M1, M2)),
(topic + P1, ByteBufferMessageSet(M3)),
(topic + P2, ByteBufferMessageSet(M4)),
}
这个方法还考虑压缩的情况,即producer的属性compression.codec中指定的压缩策略。如果启用了压缩,追加写当前日志段的时候会先解压缩消息再写入(详见Log.scala的append方法)。
5.3.3 send发送消息
这个方法基于上一步中构造的(topic+分区, ByteBufferMessageSet)元组构造ProducerRequest发送给对应的broker,并返回发送失败的topic分区集合。具体的逻辑如下:
1. 判断要发送到的broker id是否合法,如果小于0的话(通常是-1),说明消息要发送到的分区没有leader。这种情况下直接记录一个警告信息并直接返回未发送的消息集合
2. 如果broker id是合法的,那么还需要再判断一下要发送的消息是否为空,如果为空自然也不需要做什么,直接返回空集合就好了
3. 如果上一步中的确有要发送的消息,那么就根据request.required.acks以及超时时间等配置构造一个ProducerRequest将消息封装进这个请求中。
4. 获取这个broker上的syncProducer——这个也是从producer池缓存中拿到的,如果池缓存中没有的话也只是记录为一个警告,下次重试的时候刷新一下topic元数据信息就能够创建出来了。
5. 一旦拿到目标broker上的syncProducer,就可以使用它来发送请求了,即调用syncProducer.send(producerRequest)
6. 请求被Kafka server处理之后(如何处理的下面会有详细介绍)会发送一个对应的响应(response)给eventHandler。
7. 拿到response之后需要判断一下response是否为空。这其实还要看下request.required.acks的设置。当该值是默认值0时表示producer不需要等待broker的应答(acknowledgement),这可以带来最低的延迟但持久性也最差,因为如果一个broker宕机了有可能会丢失数据。如果该值是0, 那么Kafka处理完ProducerRequest之后并不发送任何response。因此若发现response是空,那么自然表示所有数据已经被发送了,返回空集合表示没有发送失败的分区消息
8. 但倘若request.required.acks是1(其实还有两种情况,比如分区数是0等——这里不做讨论),那么就表示producer在leader副本获得数据后需要等待broker的应答。这个值的设置有更好的持久化效果。假设request.required.acks是1的话,那么Kafka处理完请求后悔发送response,因此代码还要继续解析response中的数据以确定到底有无失败消息
9. 在开始解析response代码之前,先来说说ProduceResponse的格式,如下图所示:
response中比较重要的信息是topic下面多个分区对应的错误码和消息待追加的第一条消息的位移。
因此,在拿到response之后,需要先判断一下response中总的分区数是否和请求中的分区数一样,如果不同的话说明在返回的response不完整,Kafka代码会抛出异常。否则,就从response中找出那些有错误的分区(即错误码不是NoError的)并返回。
至此,客户端的producer程序就已经执行完毕了。可能有些人会感到奇怪?貌似消息只是以请求的方式被发送到Kafka server上,但消息不是还要被写入到日志中吗?这部分功能又是在哪里做的呢? 下面我们来看看Kafka server是如何处理ProducerRequest的?
六、 KafkaServer处理请求
Kafka server在启动的时候会开启N个线程来处理请求。其中N是由num.io.threads属性指定,默认是8。Kafka推荐你设置该值至少是机器上磁盘数。在KafkaServer的startup方法中,如代码所示:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|
KafkaRequestHandler实际上是一个Runnable,它的run核心方法中以while (true)的方式调用api.handle(request)不断地接收请求处理,如下面的代码所示:
1 2 3 4 5 6 7 8 9 10 11 12 |
|
在KafkaApis中handle的主要作用就是接收各种类型的请求。本文只关注ProducerRequest请求:
1 2 3 4 5 6 7 8 |
|
如此看来,核心的方法就是handleProducerOrOffsetCommitRequest了。这个方法之所以叫这个名字,是因为它同时可以处理ProducerRequest和OffsetCommitRequest两种请求,后者其实也是一种特殊的ProducerRequest。从Kafka 0.8.2之后kafka使用一个特殊的topic来保存提交位移(commit offset)。这个topic名字是__consumer_offsets。本文中我们关注的是真正的ProducerRequest。下面来看看这个方法的逻辑,如下图所示:
整体逻辑看上去非常简单,如下面的代码所示:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 |
|
由上面代码可见,无论request.required.acks是何值,都需要首先将待发送的消息集合追加写入本地的提交日志中。此时如何按照默认值是是0的情况,那么这写入日志后需要判断下所有消息是否都已经发送成功了。如果出现了发送错误,那么就将关闭连入broker的Socket Server以通知客户端程序错误的发生。现在的关键是追加写是如何完成的?即方法appendToLocalLog如何实现的?该方法整体逻辑流程图如下图所示:
由于逻辑很直观,不对代码做详细分析,不过值得关注的是这个方法会捕获很多异常:
异常名称 | 具体含义 | 异常处理 |
KafakStorageException | 这可能是不可恢复的IO错误 | 既然无法恢复,则终止该broker上JVM进程 |
InvalidTopicException | 显式给__consumer_offsets topic发送消息就会有这个异常抛出,不要这么做,因为这是内部topic | 将InvalidTopicException封装进ProduceResult返回 |
UnknownTopicOrPartitionException | topic或分区不在该broker上时抛出该异常 | 将UnknownTopicOrPartitionException封装进ProduceResult返回 |
NotLeaderForPartitionException | 目标分区的leader副本不在该broker上 | 将NotLeaderForPartitionException封装进ProduceResult返回 |
NotEnoughReplicasException | 只会出现在request.required.acks=-1且ISR中的副本数不满足min.insync.replicas指定的最少副本数时会抛出该异常 | 将NotEnoughReplicasException封装进ProduceResult返回 |
其他 | 处理ProducerRequest时发生的其他异常 | 将对应异常封装进ProduceResult返回 |
okay,貌似现在我们就剩下最后一个主要的方法没说了。分析完这个方法之后整个producer发送消息的流程应该就算是完整地走完了。最后的这个方法就是Partition的appendMessagesToLeader,其主要代码如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
|
至此,一个最简单的scala版同步producer的代码走读就算正式完成了,可以发现Kafka设计的思路就是在每个broker上启动一个server不断地处理从客户端发来的各种请求,完成对应的功能并按需返回对应的response。希望本文能对希望了解Kafka producer机制的人有所帮助。