Redis服务器是典型的一对多服务器程序,通过使用由IO多路复用技术实现的文件事件处理器,Redis服务器使用单线程单进程的方式来处理命令请求,并与多个客户端进行网络通信。
Redis客户端与服务器之间通过TCP协议进行通信。TCP协议是一种流式协议,数据以字节流的形式进行传递,没有固有的"报文"或"报文边界"的概念,如果需要设置边界,需要应用层自行处理。
因此,Redis客户端与服务器之间的交互数据,都按照Redis自定义的统一请求协议的格式进行编码。使用这种协议,每条命令之间都有了“边界”。
举个例子,如果客户端要向服务器发送以下命令请求:
SET msg “helloworld”
那么客户端实际发送的数据是:
*3\r\n$3\r\nSET\r\n$3\r\nmsg\r\n$11\r\nhelloworld\r\n
服务器收到这样的数据时,就可以通过解析”*3”得到该命令有3个参数,第一个参数长度为3,值为”SET”,也就是要执行的命令;第二个参数长度为3,值为”msg”;第三个参数长度为11,值为”hello world”。
这样就得到了一条完整的命令,解析并处理该命令后,接着解析下一条命令。
一:客户端结构redisClient
对于每个与服务器进行连接的客户端,服务器都为这些客户端建立了相应的redisClient结构,该结构体定义在redis.h中,它的定义如下(有省略):
typedef struct redisClient { uint64_t id; /* Client incremental unique ID. */ int fd; redisDb *db; int dictid; robj *name; /* As set by CLIENT SETNAME */ sds querybuf; size_t querybuf_peak; /* Recent (100ms or more) peak of querybuf size */ int argc; robj **argv; struct redisCommand *cmd, *lastcmd; int reqtype; int multibulklen; /* number of multi bulk arguments left to read */ long bulklen; /* length of bulk argument in multi bulk request */ list *reply; unsigned long reply_bytes; /* Tot bytes of objects in reply list */ ... int flags; /* REDIS_SLAVE | REDIS_MONITOR | REDIS_MULTI ... */ int authenticated; /* when requirepass is non-NULL */ ... /* Response buffer */ int bufpos; char buf[REDIS_REPLY_CHUNK_BYTES]; } redisClient;
这个结构保存了客户端当前的状态信息,以及执行相关功能时需要用到的数据结构,比如:客户端的socket描述符(fd),指向客户端正在使用的数据库的指针(db),客户端的名字(name),客户端的标志值(flags),客户端输入缓存(querybuf),客户端当前要执行的命令参数(argv),以及参数个数(argc),以及客户端的输出缓存(buf和reply)等。
这些属性的具体意义会在下面的章节中介绍。
二:初始化(创建监听端口、注册建连事件)
在Redis服务器的初始化函数initserver中,调用aeCreateEventLoop创建了Redis服务器中唯一的事件循环结构(aeEventLoop):server.e1。server.e1是全局性的,Redis服务器中所有的事件都注册在该结构上。
默认情况下,Redis服务器监听本地所有网络接口上的连接(0.0.0.0)。可以在配置文件中,通过"bind"选项设置监听的地址,其后跟一个或多个空格分隔的IP地址,比如:
bind 192.168.1.100 10.0.0.1
Redis将这些地址保存在server.bindaddr中,IP地址总数为server.bindaddr_count。
在initserver函数中,调用listenToPort,根据这些监听地址,调用socket、bind和listen创建监听socket描述符。
/* Open the TCP listening socket for the user commands. */ if (server.port != 0 && listenToPort(server.port, server.ipfd, &server.ipfd_count) == REDIS_ERR) exit(1);
创建好的监听描述符保存在描述符数组server.ipfd中,最后创建的监听描述符的总数为server.ipfd_count。server.ipfd数组为固定大小:REDIS_BINDADDR_MAX(16),因此最多只支持16个监听地址。
然后,针对每个监听描述符,调用aeCreateFileEvent,注册其上的可读事件,回调函数为acceptTcpHandler:
for (j = 0; j < server.ipfd_count; j++) { if (aeCreateFileEvent(server.el, server.ipfd[j], AE_READABLE, acceptTcpHandler,NULL) == AE_ERR) { redisPanic( "Unrecoverable error creating server.ipfd file event."); } }
Redis服务器收到客户端的TCP连接后,就会调用acceptTcpHandler函数进行处理。acceptTcpHandler函数的代码如下:
void acceptTcpHandler(aeEventLoop *el, int fd, void *privdata, int mask) { int cport, cfd, max = MAX_ACCEPTS_PER_CALL; char cip[REDIS_IP_STR_LEN]; REDIS_NOTUSED(el); REDIS_NOTUSED(mask); REDIS_NOTUSED(privdata); while(max--) { cfd = anetTcpAccept(server.neterr, fd, cip, sizeof(cip), &cport); if (cfd == ANET_ERR) { if (errno != EWOULDBLOCK) redisLog(REDIS_WARNING, "Accepting client connection: %s", server.neterr); return; } redisLog(REDIS_VERBOSE,"Accepted %s:%d", cip, cport); acceptCommonHandler(cfd,0); } }
该函数每次最多处理MAX_ACCEPTS_PER_CALL(1000)个连接,如果还有其他连接,则等到下次调用acceptTcpHandler时再处理,这样做的原因是为了保证该函数的执行时间不会过长,以免影响后续事件的处理。
针对每个连接,调用anetTcpAccept函数进行accept,并将客户端地址记录到cip以及cport中;
建链后的socket描述符为cfd,根据该值调用acceptCommonHandler,该函数中,调用createClient创建一个redisClient结构,并注册socket描述符上的可读事件,回调函数为readQueryFromClient。最后将该redisClient结构存储到全局客户端列表server.clients中;
if (aeCreateFileEvent(server.el,fd,AE_READABLE, readQueryFromClient, c) == AE_ERR) { close(fd); zfree(c); return NULL; }
三:接收客户端请求,解析并处理请求
1:接收数据
Redis服务器收到客户端的请求数据后,就会触发socket描述符上的可读事件,从而调用其回调函数readQueryFromClient。
在readQueryFromClient中,调用read读取客户端的请求,并缓存到redisClient结构中的输入缓存querybuf中,该输入缓存会根据接收到的数据长度动态扩容。接下来对收到的请求数据进行解析,并执行相应的命令处理函数。
readQueryFromClient函数代码如下:
void readQueryFromClient(aeEventLoop *el, int fd, void *privdata, int mask) { redisClient *c = (redisClient*) privdata; int nread, readlen; size_t qblen; REDIS_NOTUSED(el); REDIS_NOTUSED(mask); server.current_client = c; readlen = REDIS_IOBUF_LEN; /* If this is a multi bulk request, and we are processing a bulk reply * that is large enough, try to maximize the probability that the query * buffer contains exactly the SDS string representing the object, even * at the risk of requiring more read(2) calls. This way the function * processMultiBulkBuffer() can avoid copying buffers to create the * Redis Object representing the argument. */ if (c->reqtype == REDIS_REQ_MULTIBULK && c->multibulklen && c->bulklen != -1 && c->bulklen >= REDIS_MBULK_BIG_ARG) { int remaining = (unsigned)(c->bulklen+2)-sdslen(c->querybuf); if (remaining < readlen) readlen = remaining; } qblen = sdslen(c->querybuf); if (c->querybuf_peak < qblen) c->querybuf_peak = qblen; c->querybuf = sdsMakeRoomFor(c->querybuf, readlen); nread = read(fd, c->querybuf+qblen, readlen); if (nread == -1) { if (errno == EAGAIN) { nread = 0; } else { redisLog(REDIS_VERBOSE, "Reading from client: %s",strerror(errno)); freeClient(c); return; } } else if (nread == 0) { redisLog(REDIS_VERBOSE, "Client closed connection"); freeClient(c); return; } if (nread) { sdsIncrLen(c->querybuf,nread); c->lastinteraction = server.unixtime; if (c->flags & REDIS_MASTER) c->reploff += nread; server.stat_net_input_bytes += nread; } else { server.current_client = NULL; return; } if (sdslen(c->querybuf) > server.client_max_querybuf_len) { sds ci = catClientInfoString(sdsempty(),c), bytes = sdsempty(); bytes = sdscatrepr(bytes,c->querybuf,64); redisLog(REDIS_WARNING,"Closing client that reached max query buffer length: %s (qbuf initial bytes: %s)", ci, bytes); sdsfree(ci); sdsfree(bytes); freeClient(c); return; } processInputBuffer(c); server.current_client = NULL; }
该函数中,首先设置每次read读取的最大字节数readlen为REDIS_IOBUF_LEN(16k)。然后得到输入缓存c->querybuf当前长度qblen,也就是已接收到的客户端请求数据的长度。根据qblen更新c->querybuf_peak的值,该属性记录了输入缓存c->querybuf的最大长度。
接下来为c->querybuf扩容,使其能容纳readlen个字节;然后就调用read,最多读取readlen个字节。读取的内容追加到c->querybuf尾部。
如果read返回值nread为-1,若errno等于EAGAIN,说明暂无数据,置nread为0;否则记录错误信息到日志,释放客户端结构redisClient,并关闭链接,然后直接返回;
如果read返回0,说明客户端关闭连接,此时记录信息到日志,释放客户端结构redisClient,并关闭链接,然后直接返回;
read返回非0,说明读取到了数据。判断当前输入缓存c->querybuf的长度是否大于阈值server.client_max_querybuf_len(1G)。若超过阈值,则记录当前客户端信息,以及c->querybuf中前64个字节到日志中,然后释放客户端结构redisClient,并关闭链接,然后直接返回;
最后,调用processInputBuffer解析收到的数据,并在读取到完整的一条命令请求之后,执行相应的命令处理函数。
2:解析处理客户端命令
Redis服务器收到客户端的请求数据后,调用processInputBuffer函数解析输入缓存redisClient->querybuf中的数据。在得到一条完整的命令请求数据后,就调用processCommand函数处理执行相应的命令。
processInputBuffer的代码如下:
void processInputBuffer(redisClient *c) { /* Keep processing while there is something in the input buffer */ while(sdslen(c->querybuf)) { /* Return if clients are paused. */ if (!(c->flags & REDIS_SLAVE) && clientsArePaused()) return; /* Immediately abort if the client is in the middle of something. */ if (c->flags & REDIS_BLOCKED) return; /* REDIS_CLOSE_AFTER_REPLY closes the connection once the reply is * written to the client. Make sure to not let the reply grow after * this flag has been set (i.e. don't process more commands). */ if (c->flags & REDIS_CLOSE_AFTER_REPLY) return; /* Determine request type when unknown. */ if (!c->reqtype) { if (c->querybuf[0] == '*') { c->reqtype = REDIS_REQ_MULTIBULK; } else { c->reqtype = REDIS_REQ_INLINE; } } if (c->reqtype == REDIS_REQ_INLINE) { if (processInlineBuffer(c) != REDIS_OK) break; } else if (c->reqtype == REDIS_REQ_MULTIBULK) { if (processMultibulkBuffer(c) != REDIS_OK) break; } else { redisPanic("Unknown request type"); } /* Multibulk processing could see a <= 0 length. */ if (c->argc == 0) { resetClient(c); } else { /* Only reset the client when the command was executed. */ if (processCommand(c) == REDIS_OK) resetClient(c); } } }
该函数中,只要c->querybuf不为空,就一直循环处理。在该循环中:
首先,根据客户端的当前状态标志c->flags,判断是否需要继续解析处理,比如:
如果当前客户端不是SLAVE节点,并且客户端处于阻塞状态,则直接返回;
如果客户端标志c->flags包含REDIS_BLOCKED,则直接返回;
如果客户端标志c->flags包含REDIS_CLOSE_AFTER_REPLY,则直接返回。该标志表明发生了异常,服务器不再需要处理客户端请求,在回复客户端错误消息后直接关闭链接。
接下来,如果c->reqtype为0,说明刚要开始处理一条请求(第一次处理c->querybuf中的数据,或刚处理完一条完整的命令请求)。如果数据c->querybuf的首字节为‘*‘,说明该请求会跨越多行(包含多个”\r\n”),则置c->reqtype为EDIS_REQ_MULTIBULK;否则说明该请求为单行请求,置c->reqtype为REDIS_REQ_INLINE;
如果c->reqtype为REDIS_REQ_INLINE,则调用processInlineBuffer解析单行请求,如果c->reqtype为EDIS_REQ_MULTIBULK,则调用processMultibulkBuffer解析多行请求。这两个函数的返回值如果不是REDIS_OK,则说明尚未收到一条完整的请求,需要退出循环,函数返回后接着读取剩余的数据;
如果这两个函数返回为REDIS_OK,则说明已经收到并解析好了一条完整的请求,命令的参数已经分解到数组c->argv中,c->argc表示参数个数。
如果c->argc为0,则无需处理,直接调用resetClient重置客户端状态,也就是释放c->argv数组中的元素,置c->argc、c->reqtype和c->multibulklen为0,置c->bulklen为-1等。然后接着处理c->querybuf中剩下的内容;
如果c->argc非0,则调用processCommand处理该命令,调用相应的命令处理函数。处理成功后,调用resetClient重置客户端状态。然后接着处理c->querybuf中剩下的内容。
函数processInlineBuffer和processMultibulkBuffer分别解析客户端的单行请求和多行请求。这两个函数返回REDIS_OK,说明已经收到并解析好了一条完整的请求,命令的参数已经分解到数组c->argv中,c->argc表示参数个数。
如果这俩函数返回REDIS_ERR,要么说明收到的客户端命令请求尚不完整,这其实不是错误,这种情况下函数返回后,服务器需要继续接收客户端请求;要么说明客户端发来的请求不符合统一请求协议的格式要求,这种情况下调用setProtocolError删除c->querybuf相应的内容,并且将客户端的标志位c->flags增加REDIS_CLOSE_AFTER_REPLY标记,从而在回复客户端错误信息后直接关闭连接。
processMultibulkBuffer函数要比processInlineBuffer稍微复杂一些,直接看一下processMultibulkBuffer的实现:
int processMultibulkBuffer(redisClient *c) { char *newline = NULL; int pos = 0, ok; long long ll; if (c->multibulklen == 0) { /* The client should have been reset */ redisAssertWithInfo(c,NULL,c->argc == 0); /* Multi bulk length cannot be read without a \r\n */ newline = strchr(c->querybuf,'\r'); if (newline == NULL) { if (sdslen(c->querybuf) > REDIS_INLINE_MAX_SIZE) { addReplyError(c,"Protocol error: too big mbulk count string"); setProtocolError(c,0); } return REDIS_ERR; } /* Buffer should also contain \n */ if (newline-(c->querybuf) > ((signed)sdslen(c->querybuf)-2)) return REDIS_ERR; /* We know for sure there is a whole line since newline != NULL, * so go ahead and find out the multi bulk length. */ redisAssertWithInfo(c,NULL,c->querybuf[0] == '*'); ok = string2ll(c->querybuf+1,newline-(c->querybuf+1),&ll); if (!ok || ll > 1024*1024) { addReplyError(c,"Protocol error: invalid multibulk length"); setProtocolError(c,pos); return REDIS_ERR; } pos = (newline-c->querybuf)+2; if (ll <= 0) { sdsrange(c->querybuf,pos,-1); return REDIS_OK; } c->multibulklen = ll; /* Setup argv array on client structure */ if (c->argv) zfree(c->argv); c->argv = zmalloc(sizeof(robj*)*c->multibulklen); } redisAssertWithInfo(c,NULL,c->multibulklen > 0); while(c->multibulklen) { /* Read bulk length if unknown */ if (c->bulklen == -1) { newline = strchr(c->querybuf+pos,'\r'); if (newline == NULL) { if (sdslen(c->querybuf) > REDIS_INLINE_MAX_SIZE) { addReplyError(c, "Protocol error: too big bulk count string"); setProtocolError(c,0); return REDIS_ERR; } break; } /* Buffer should also contain \n */ if (newline-(c->querybuf) > ((signed)sdslen(c->querybuf)-2)) break; if (c->querybuf[pos] != '$') { addReplyErrorFormat(c, "Protocol error: expected '$', got '%c'", c->querybuf[pos]); setProtocolError(c,pos); return REDIS_ERR; } ok = string2ll(c->querybuf+pos+1,newline-(c->querybuf+pos+1),&ll); if (!ok || ll < 0 || ll > 512*1024*1024) { addReplyError(c,"Protocol error: invalid bulk length"); setProtocolError(c,pos); return REDIS_ERR; } pos += newline-(c->querybuf+pos)+2; if (ll >= REDIS_MBULK_BIG_ARG) { size_t qblen; /* If we are going to read a large object from network * try to make it likely that it will start at c->querybuf * boundary so that we can optimize object creation * avoiding a large copy of data. */ sdsrange(c->querybuf,pos,-1); pos = 0; qblen = sdslen(c->querybuf); /* Hint the sds library about the amount of bytes this string is * going to contain. */ if (qblen < (size_t)ll+2) c->querybuf = sdsMakeRoomFor(c->querybuf,ll+2-qblen); } c->bulklen = ll; } /* Read bulk argument */ if (sdslen(c->querybuf)-pos < (unsigned)(c->bulklen+2)) { /* Not enough data (+2 == trailing \r\n) */ break; } else { /* Optimization: if the buffer contains JUST our bulk element * instead of creating a new object by *copying* the sds we * just use the current sds string. */ if (pos == 0 && c->bulklen >= REDIS_MBULK_BIG_ARG && (signed) sdslen(c->querybuf) == c->bulklen+2) { c->argv[c->argc++] = createObject(REDIS_STRING,c->querybuf); sdsIncrLen(c->querybuf,-2); /* remove CRLF */ c->querybuf = sdsempty(); /* Assume that if we saw a fat argument we'll see another one * likely... */ c->querybuf = sdsMakeRoomFor(c->querybuf,c->bulklen+2); pos = 0; } else { c->argv[c->argc++] = createStringObject(c->querybuf+pos,c->bulklen); pos += c->bulklen+2; } c->bulklen = -1; c->multibulklen--; } } /* Trim to pos */ if (pos) sdsrange(c->querybuf,pos,-1); /* We're done when c->multibulk == 0 */ if (c->multibulklen == 0) return REDIS_OK; /* Still not read to process the command */ return REDIS_ERR; }
redisClient结构中的multibulklen属性,记录正在解析的一条完整的命令请求中,尚未处理的命令参数的个数。如果c->multibulklen为0,说明当前要解析的是命令请求的开头,格式为"*<n>\r\n"。
这种情况下,首先找到c->querybuf中的第一个‘\r‘的位置newline,如果c->querybuf中找不到‘\r‘,说明收到的客户端的请求尚不完整,直接返回REDIS_ERR。并且如果c->querybuf目前长度超过64k的话,则反馈给客户端错误信息:"Protocol error: too big mbulk count string",然后调用setProtocolError为客户端标志位c->flags增加REDIS_CLOSE_AFTER_REPLY标记;直接返回REDIS_ERR;
然后如果(newline-(c->querybuf))大于((signed)sdslen(c->querybuf)-2),说明收到的客户端请求尚不完整(缺少‘\n‘),直接返回REDIS_ERR;
接下来就开始解析该行,该行内容的正确格式是"*<n>\r\n",其中<n>是一个表明接下来包含多少个字符串的整数。调用string2ll解析得到其中的整数ll,如果解析失败,或者ll大于1M,则反馈给客户端信息"Protocol error: invalid multibulk length",然后,调用setProtocolError为客户端标志位c->flags增加REDIS_CLOSE_AFTER_REPLY标记,返回REDIS_ERR;
然后使pos记为c->querybuf下一行首地址的索引;
如果ll小于等于0,则直接清除c->querybuf中刚刚解析的行,直接返回REDIS_OK;然后将ll赋值到c->multibulklen中。然后根据c->multibulklen的值申请数组c->argv的空间,其数组长度就是c->multibulklen。
得到c->multibulklen的值后,接下来开始依次处理命令请求中的每一个字符串行:
redisClient结构中的bulklen属性,记录接下来要解析的命令请求行中,包含的字符串的长度。如果c->bulklen为-1,说明当前要解析的,是字符串的长度行,格式为"$<n>\r\n"。
这种情况下,处理过程与c->multibulklen为0时的解析过程类似,不在赘述。解析完后,下一行中包含的字符串长度存储在ll中,ll最大为512M,否则反馈给客户端错误信息:"Protocol error: invalid bulk length",并且调用setProtocolError为客户端标志位c->flags增加REDIS_CLOSE_AFTER_REPLY标记,返回REDIS_ERR;
然后使pos记为c->querybuf下一行首地址的索引;
如果字符串长度ll大于等于32k,为了后续创建字符串对象时避免复制大块内存,直接使用c->querybuf创建字符串对象。因此直接将c->querybuf中pos之前的内容删除,置pos为0,并且必要情况下为c->querybuf扩容。最后将ll赋值到c->bulklen中;
接下来开始解析c->querybuf中的字符串行,格式为"xxxx\r\n";
如果(sdslen(c->querybuf)-pos)小于((unsigned)(c->bulklen+2)),说明收到的客户端请求中,字符串行尚不完整,直接退出循环,返回REDIS_ERR;
否则,如果同时满足以下三个条件:
pos == 0;
c->bulklen >= REDIS_MBULK_BIG_ARG;
(signed) sdslen(c->querybuf) ==c->bulklen+2);
说明,当前c->querybuf中,不多不少正好包含的是一个大于32k的大字符串行,这种情况下,为了避免拷贝大块内存,直接使用c->querybuf创建字符串对象,并存储到c->argv中;然后重新创建c->querybuf,并为其扩容为c->bulklen+2,这样可以容纳在后续遇到的大字符串(Assume that if we saw a fat argument we‘ll see another one likely...);
如果不满足上面的条件,则创建字符串对象,将c->querybuf+pos的内容复制到该字符串对象中;
处理完一个完整的字符串行后,重置c->bulklen为-1,并且c->multibulklen--;然后循环处理下一个字符串行;
跳出循环后,首先删除已解析的内容,如果c->multibulklen为0,说明已经完整的收到并解析了客户端的一个跨多行的命令请求,返回REDIS_OK,表示可以开始处理该命令了;否则,返回REDIS_ERR,继续接收客户端请求;
processInlineBuffer函数的实现要简单很多,不再赘述。
四:回复客户端
服务器执行完相应的命令处理函数之后,就会调用addReply类的函数将要回复给客户端的信息写入客户端输出缓存。这些函数包括addReply,addReplySds,addReplyError,addReplyStatus等。
这些函数首先都会调用prepareClientToWrite函数,注册socket描述符上的可写事件,然后将回复信息写入到客户端输出缓存中。
redisClient结构中有两种客户端输出缓存,一种是静态大小的数组(buf),一种是动态大小的列表(reply)。追加回复信息时,首先尝试将信息追加到数组buf中,如果其空间不足,则将信息在追加到reply中。比如addReplyString的代码如下:
void addReplyString(redisClient *c, char *s, size_t len) { if (prepareClientToWrite(c) != REDIS_OK) return; if (_addReplyToBuffer(c,s,len) != REDIS_OK) _addReplyStringToList(c,s,len); }
调用函数_addReplyToBuffer向c->buf中添加数据,如果该函数返回REDIS_ERR,说明添加失败,则调用_addReplyStringToList,将数据添加到c->reply中。其他addReply类的函数也是类似的处理,不再赘述。
每次向客户端输出缓存追加新数据之前,都要调用函数prepareClientToWrite。 因Redis中不同类型的客户端需要不同的处理:有些客户端(比如加载AOF文件时的伪客户端)无需追加新数据,这种情况下,该函数直接返回REDIS_ERR;有些客户端(比如Lua客户端)需要追加新数据,但无需注册socket描述符上的可写事件;有些客户端(普通客户端)需要追加数据,并注册socket描述符上的可写事件;
因此,调用prepareClientToWrite函数返回REDIS_ERR,则表示无需向输出缓存追加新数据,只有返回REDIS_OK时才需要向输出缓存中追加新数据。
prepareClientToWrite函数的代码如下:
int prepareClientToWrite(redisClient *c) { /* If it's the Lua client we always return ok without installing any * handler since there is no socket at all. */ if (c->flags & REDIS_LUA_CLIENT) return REDIS_OK; /* Masters don't receive replies, unless REDIS_MASTER_FORCE_REPLY flag * is set. */ if ((c->flags & REDIS_MASTER) && !(c->flags & REDIS_MASTER_FORCE_REPLY)) return REDIS_ERR; if (c->fd <= 0) return REDIS_ERR; /* Fake client for AOF loading. */ /* Only install the handler if not already installed and, in case of * slaves, if the client can actually receive writes. */ if (c->bufpos == 0 && listLength(c->reply) == 0 && (c->replstate == REDIS_REPL_NONE || (c->replstate == REDIS_REPL_ONLINE && !c->repl_put_online_on_ack))) { /* Try to install the write handler. */ if (aeCreateFileEvent(server.el, c->fd, AE_WRITABLE, sendReplyToClient, c) == AE_ERR) { freeClientAsync(c); return REDIS_ERR; } } /* Authorize the caller to queue in the output buffer of this client. */ return REDIS_OK; }
如果当前客户端是Lua客户端,直接返回REDIS_OK,而无需注册socket描述符上的可写事件,因为根本没有socket描述符;
如果客户端为Master节点,除非设置REDIS_MASTER_FORCE_REPLY标志,否则这种客户端不接收回复,因此直接返回REDIS_ERR;
如果客户端的socket描述符小于等于0,说明是加载AOF文件时的伪客户端,直接返回REDIS_ERR;
如果是普通客户端,或者是在从节点需要接收数据时,如果此前从未注册过socket上的可写事件,则调用aeCreateFileEvent注册socket描述符c->fd上的可写事件,事件回调函数为sendReplyToClient;最后直接返回REDIS_OK;
当TCP输出缓冲区有一定剩余空间时,socket描述符上的可写事件就会触发,从而调用事件回调函数sendReplyToClient。该函数调用write,将输出缓存中的数据发送出去。函数的代码如下:
void sendReplyToClient(aeEventLoop *el, int fd, void *privdata, int mask) { redisClient *c = privdata; int nwritten = 0, totwritten = 0, objlen; size_t objmem; robj *o; REDIS_NOTUSED(el); REDIS_NOTUSED(mask); while(c->bufpos > 0 || listLength(c->reply)) { if (c->bufpos > 0) { nwritten = write(fd,c->buf+c->sentlen,c->bufpos-c->sentlen); if (nwritten <= 0) break; c->sentlen += nwritten; totwritten += nwritten; /* If the buffer was sent, set bufpos to zero to continue with * the remainder of the reply. */ if (c->sentlen == c->bufpos) { c->bufpos = 0; c->sentlen = 0; } } else { o = listNodeValue(listFirst(c->reply)); objlen = sdslen(o->ptr); objmem = getStringObjectSdsUsedMemory(o); if (objlen == 0) { listDelNode(c->reply,listFirst(c->reply)); c->reply_bytes -= objmem; continue; } nwritten = write(fd, ((char*)o->ptr)+c->sentlen,objlen-c->sentlen); if (nwritten <= 0) break; c->sentlen += nwritten; totwritten += nwritten; /* If we fully sent the object on head go to the next one */ if (c->sentlen == objlen) { listDelNode(c->reply,listFirst(c->reply)); c->sentlen = 0; c->reply_bytes -= objmem; } } /* Note that we avoid to send more than REDIS_MAX_WRITE_PER_EVENT * bytes, in a single threaded server it's a good idea to serve * other clients as well, even if a very large request comes from * super fast link that is always able to accept data (in real world * scenario think about 'KEYS *' against the loopback interface). * * However if we are over the maxmemory limit we ignore that and * just deliver as much data as it is possible to deliver. */ server.stat_net_output_bytes += totwritten; if (totwritten > REDIS_MAX_WRITE_PER_EVENT && (server.maxmemory == 0 || zmalloc_used_memory() < server.maxmemory)) break; } if (nwritten == -1) { if (errno == EAGAIN) { nwritten = 0; } else { redisLog(REDIS_VERBOSE, "Error writing to client: %s", strerror(errno)); freeClient(c); return; } } if (totwritten > 0) { /* For clients representing masters we don't count sending data * as an interaction, since we always send REPLCONF ACK commands * that take some time to just fill the socket output buffer. * We just rely on data / pings received for timeout detection. */ if (!(c->flags & REDIS_MASTER)) c->lastinteraction = server.unixtime; } if (c->bufpos == 0 && listLength(c->reply) == 0) { c->sentlen = 0; aeDeleteFileEvent(server.el,c->fd,AE_WRITABLE); /* Close connection after entire reply has been sent. */ if (c->flags & REDIS_CLOSE_AFTER_REPLY) freeClient(c); } }
当追加要发送的数据到输出缓存时,首先尝试将其添加到c->buf中;如果c->buf空间不足,则追加到c->reply中。如果使用的是c->buf,则c->bufpos表示其中缓存的数据总量,c->sentlen表示其中已发送的数据量;如果使用的是c->reply,则c->reply_bytes表示列表c->reply中,保存的所有sds字符串占用的内存总字节数,c->sentlen表示列表中的正在发送数据的单块缓存元素中,已发送的数据量。
函数中的totwritten表示本函数当前已发送的数据量;
在函数中,如果c->bufpos大于0,或者listLength(c->reply)大于0,说明缓存中有数据要发送,进入循环,调用write发送数据,write返回值nwritten小于等于0时,要么是TCP输出缓存无空间,要么是发生了错误,因此直接跳出循环。
在循环中:如果c->bufpos大于0,说明使用的缓存是c->buf。因此调用write,将c->buf中的剩余数据(c->bufpos- c->sentlen个字节)发送出去。如果write返回值nwritten小于等于0时,直接跳出循环;否则,将nwritten增加到c->sentlen和totwritten中,继续下一轮循环写入。如果c->buf中的数据已全部发送出去,则重置c->bufpos和c->sentlen为0,表示清空缓存c->buf;
否则的话,表示使用的缓存是列表c->reply。得到其头结点中保存的字符串对象o,然后得到该字符串的长度objlen,以及该字符串占用的内存objmem。接着调用write,将o->ptr中未发送的数据(objlen - c->sentlen个字节)全部发送出去。如果write返回值nwritten小于等于0时,直接跳出循环;否则,将nwritten增加到c->sentlen和totwritten中,继续下一轮循环写入。如果c->sentlen等于objlen,说明当前节点的数据已经全部发送完成,直接删除该节点,并重置c->sentlen为0,并从c->reply_bytes中减去objmem;
接下来,将本次已发送的字节数totwritten加到server.stat_net_output_bytes中。
因本函数是可写事件的回调函数,为了避免该函数执行时间过长,而影响其他事件的处理。因此这里限制该函数最大发送的字节数为REDIS_MAX_WRITE_PER_EVENT(64k),一旦已发送的字节数totwritten超过了该值,并且在没设置最大内存限制,或者尚未超过设置的最大内存限制的条件下,直接退出循环,停止发送。
退出循环后,如果write出错,并且errno为EAGAIN,说明TCP输出缓存无空间了,这种情况不是错误,直接置nwritten = 0即可;否则需要记录错误日志,并且调用freeClient释放redisClient,关闭与客户端的连接;
最后,如果缓存中所有的数据都已经发送完成,则置c->sentlen为0,并且删除socket描述符c->fd上的可写事件;如果客户端标志c->flags中设置了REDIS_CLOSE_AFTER_REPLY,则调用freeClient释放redisClient,关闭与客户端的连接。
其他相关代码,可以参考:
https://github.com/gqtc/redis-3.0.5/blob/master/redis-3.0.5/src/networking.c