PLSQL_硬解析和解析的区别(案例)(进行SQL优化性能调优的基础,了解解析过程)

2014-08-11 BaoXinjian

一、摘要



Oracle硬解析和软解析是我们经常遇到的问题,所以需要考虑何时产生软解析何时产生硬解析,如何判断

SQL的执行过程

当发布一条SQL或PL/SQL命令时,Oracle会自动寻找该命令是否存在于共享池中来决定对当前的语句使用硬解析或软解析。

通常情况下,SQL语句的执行过程如下:

Step1. SQL代码的语法(语法的正确性)及语义检查(对象的存在性与权限)。

Step2. 将SQL代码的文本进行哈希得到哈希值。

Step3. 如果共享池中存在相同的哈希值,则对这个命令进一步判断是否进行软解析,否则到e步骤。

Step4. 对于存在相同哈希值的新命令行,其文本将与已存在的命令行的文本逐个进行比较。

这些比较包括大小写,字符串是否一致,空格,注释等,如果一致,则对其进行软解析,转到步骤Step6,无需再次硬解析。

否则到步骤Step5。

Step5. 硬解析,生成执行计划。

Step6. 执行SQL代码,返回结果。

二、软解析



1.下面的三个查询语句,不能使用相同的共享SQL区。尽管查询的表对象使用了大小写,但Oracle为其生成了不同的执行计划

select * from emp;

select * from Emp;

select * from EMP;

2.类似的情况,下面的查询中,尽管其where子句empno的值不同,Oracle同样为其生成了不同的执行计划

select * from emp where empno=7369

select * from emp where empno=7788

3.在判断是否使用硬解析时,所参照的对象及schema应该是相同的,如果对象相同,而schema不同,则需要使用硬解析,生成不同的执行计划

sys@ASMDB> select owner,table_name from dba_tables where table_name like ‘TB_OBJ%‘;
        OWNER                          TABLE_NAME
        ------------------------------ ------------------------------
        USR1                           TB_OBJ               --两个对象的名字相同,当所有者不同
        SCOTT                          TB_OBJ
usr1@ASMDB> select * from tb_obj;

scott@ASMDB> select * from tb_obj;      --此时两者都需要使用硬解析以及走不同的执行计划

三、硬解析



硬解析即整个SQL语句的执行需要完完全全的解析,生成执行计划。而硬解析,生成执行计划需要耗用CPU资源,以及SGA资源。在此不得不提的是对库缓存中闩的使用。闩是锁的细化,可以理解为是一种轻量级的串行化设备。当进程申请到闩后,则这些闩用于保护共享内存的数在同一时刻不会被两个以上的进程修改。在硬解析时,需要申请闩的使用,而闩的数量在有限的情况下需要等待。大量的闩的使用由此造成需要使用闩的进程排队越频繁,性能则逾低下。

1. 下面对上面的两种情形进行演示

在两个不同的session中完成,一个为sys帐户的session,一个为scott账户的session,不同的session,其SQL命令行以不同的帐户名开头

如" [email protected]> "  表示使用时sys帐户的session," [email protected]> "表示scott帐户的session

sys@ASMDB> select name,class,value from v$sysstat where statistic#=331;
NAME                      CLASS      VALUE
-------------------- ---------- ----------           --当前的硬解析值为569
parse count (hard)           64        569

scott@ASMDB> select * from emp;    

        sys@ASMDB> select name,class,value from v$sysstat where statistic#=331;
        NAME                      CLASS      VALUE
        -------------------- ---------- ----------           --执行上一个查询后硬解析值为570,解析次数增加了一次
        parse count (hard)           64        570

scott@ASMDB> select * from Emp;

        sys@ASMDB> select name,class,value from v$sysstat where statistic#=331;
        NAME                      CLASS      VALUE
        -------------------- ---------- ----------           --执行上一个查询后硬解析值为571
        parse count (hard)           64        571

scott@ASMDB> select * from EMP;
        sys@ASMDB> select name,class,value from v$sysstat where statistic#=331;
        NAME                      CLASS      VALUE
        -------------------- ---------- ----------           --执行上一个查询后硬解析值为572
        parse count (hard)           64        572   

scott@ASMDB> select * from emp where empno=7369;       

        sys@ASMDB> select name,class,value from v$sysstat where statistic#=331;
        NAME                      CLASS      VALUE
        -------------------- ---------- ----------           --执行上一个查询后硬解析值为573
        parse count (hard)           64        573

scott@ASMDB> select * from emp where empno=7788;   --此处原来empno=7369,复制错误所致,现已更正为[email protected]   

        sys@ASMDB> select name,class,value from v$sysstat where statistic#=331;
        NAME                      CLASS      VALUE
        -------------------- ---------- ----------          --执行上一个查询后硬解析值为574
        parse count (hard)           64        574

从上面的示例中可以看出,尽管执行的语句存在细微的差别,但Oracle还是为其进行了硬解析,生成了不同的执行计划。即便是同样的SQL语句,而两条语句中空格的多少不一样,Oracle同样会进行硬解析。

四、硬解析改进 - 使用动态语句



1. 更改参数cursor_sharing

参数cursor_sharing决定了何种类型的SQL能够使用相同的SQL area

CURSOR_SHARING = { SIMILAR | EXACT | FORCE }

EXACT      --只有当发布的SQL语句与缓存中的语句完全相同时才用已有的执行计划。

FORCE      --如果SQL语句是字面量,则迫使Optimizer始终使用已有的执行计划,无论已有的执行计划是不是最佳的。

SIMILAR   --如果SQL语句是字面量,则只有当已有的执行计划是最佳时才使用它,如果已有执行计划不是最佳则重新对这个SQL

--语句进行分析来制定最佳执行计划。

可以基于不同的级别来设定该参数,如ALTER SESSION, ALTER SYSTEM

sys@ASMDB> show parameter cursor_shar             --查看参数cursor_sharing
            NAME                                 TYPE        VALUE
            ------------------------------------ ----------- ------------------------------
            cursor_sharing                       string      EXACT

sys@ASMDB> alter system set cursor_sharing=‘similar‘;    --将参数cursor_sharing的值更改为similar

sys@ASMDB> select name,class,value from v$sysstat where statistic#=331;
            NAME                      CLASS      VALUE
            -------------------- ---------- ----------        --当前硬解析的值为865
            parse count (hard)           64        865

scott@ASMDB> select * from dept where deptno=10;

sys@ASMDB> select name,class,value from v$sysstat where statistic#=331;
            NAME                      CLASS      VALUE
            -------------------- ---------- ----------        --执行上一条SQL查询后,硬解析的值变为866
            parse count (hard)           64        866

scott@ASMDB> select * from dept where deptno=20;
sys@ASMDB> select name,class,value from v$sysstat where statistic#=331;
            NAME                      CLASS      VALUE
            -------------------- ---------- ----------        --执行上一条SQL查询后,硬解析的值没有发生变化还是866
            parse count (hard)           64        866

sys@ASMDB> select sql_text,child_number from v$sql   -- 在下面的结果中可以看到SQL_TEXT列中使用了绑定变量:"SYS_B_0"
         2  where sql_text like ‘select * from dept where deptno%‘;
            SQL_TEXT                                           CHILD_NUMBE
            -------------------------------------------------- ------------
            select * from dept where deptno=:"SYS_B_0"                    0

sys@ASMDB> alter system set cursor_sharing=‘exact‘;       --将cursor_sharing改回为exact

            --接下来在scott的session 中执行deptno=40 和的查询后再查看sql_text,当cursor_sharing改为exact后,每执行那个一次

            --也会在v$sql中增加一条语句

sys@ASMDB> select sql_text,child_number from v$sql
         2  where sql_text like ‘select * from dept where deptno%‘;
            SQL_TEXT                                           CHILD_NUMBER
            -------------------------------------------------- ------------
            select * from dept where deptno=50                            0      

            select * from dept where deptno=40                            0

            select * from dept where deptno=:"SYS_B_0"                    0

2. 使用绑定变量的方式

绑定变量要求变量名称,数据类型以及长度是一致,否则无法使用软解析

(1). 绑定变量(bind variable)是指在DML语句中使用一个占位符,即使用冒号后面紧跟变量名的形式,如下

select * from emp where empno=7788    --未使用绑定变量

select * from emp where empono=:eno   --:eno即为绑定变量

在第二个查询中,变量值在查询执行时被提供。该查询只编译一次,随后会把查询计划存储在一个共享池(库缓存)中,以便以后获取和重用这个查询计划。

(2). 下面使用了绑定变量,但两个变量其实质是不相同的,对这种情形,同样使用硬解析

select * from emp where empno=:eno;

select * from emp where empno=:emp_no

使用绑定变量时要求不同的会话中使用了相同的回话环境,以及优化器的规则等

scott@ASMDB> create table tb_test(col int);     --创建表tb_test

scott@ASMDB> create or replace procedure proc1  --创建存储过程proc1使用绑定变量来插入新记录
          2  as
          3  begin
          4      for i in 1..10000
          5      loop
          6          execute immediate ‘insert into tb_test values(:n)‘ using i;
          7      end loop;
          8  end;
          9  /
Procedure created.

scott@ASMDB> create or replace procedure proc2 --创建存储过程proc2,未使用绑定变量,因此每一个SQL插入语句都会硬解析
          2  as
          3  begin
          4      for i in 1..10000
          5      loop
          6          execute immediate ‘insert into tb_test values(‘||i||‘)‘;
          7      end loop;
          8  end;
          9  /

Procedure created.

scott@ASMDB> exec runstats_pkg.rs_start

PL/SQL procedure successfully completed.

scott@ASMDB> exec proc1;

PL/SQL procedure successfully completed.

scott@ASMDB> exec runstats_pkg.rs_middle;

PL/SQL procedure successfully completed.

scott@ASMDB> exec proc2;

PL/SQL procedure successfully completed.

scott@ASMDB> exec runstats_pkg.rs_stop(1000);
            Run1 ran in 1769 hsecs
            Run2 ran in 12243 hsecs             --run2运行的时间是run1的/1769≈倍
            run 1 ran in 14.45% of the time   

            Name                                Run1      Run2      Diff
            LATCH.SQL memory manager worka       410     2,694     2,284
            LATCH.session allocation             532     8,912     8,380
            LATCH.simulator lru latch             33     9,371     9,338
            LATCH.simulator hash latch            51     9,398     9,347
            STAT...enqueue requests               31    10,030     9,999
            STAT...enqueue releases               29    10,030    10,001
            STAT...parse count (hard)              4    10,011    10,007    --硬解析的次数,前者只有四次
            STAT...calls to get snapshot s        55    10,087    10,032
            STAT...parse count (total)            33    10,067    10,034
            STAT...consistent gets               247    10,353    10,106
            STAT...consistent gets from ca       247    10,353    10,106
            STAT...recursive calls            10,474    20,885    10,411
            STAT...db block gets from cach    10,408    30,371    19,963
            STAT...db block gets              10,408    30,371    19,963
            LATCH.enqueues                       322    21,820    21,498    --闩的队列数比较
            LATCH.enqueue hash chains            351    21,904    21,553
            STAT...session logical reads      10,655    40,724    30,069
            LATCH.library cache pin           40,348    72,410    32,062    --库缓存pin
            LATCH.kks stats                        8    40,061    40,053
            LATCH.library cache lock             318    61,294    60,976
            LATCH.cache buffers chains        51,851   118,340    66,489
            LATCH.row cache objects              351   123,512   123,161
            LATCH.library cache               40,710   234,653   193,943
            LATCH.shared pool                 20,357   243,376   223,019

            Run1 latches total versus runs -- difference and pct
            Run1      Run2      Diff     Pct
            157,159   974,086   816,927  16.13%          --proc2使用闩的数量也远远多于proc1,其比值是.13%  

PL/SQL procedure successfully completed.

(3). 使用绑定变量的好处

  • 由上面的示例可知,在未使用绑定变量的情形下,不论是解析次数,闩使用的数量,队列,分配的内存,库缓存,行缓存远远高于绑定
  • 变量的情况。因此尽可能的使用绑定变量避免硬解析产生所需的额外的系统资源。
  • 绑定变量的优点
  • 减少SQL语句的硬解析,从而减少因硬解析产生的额外开销(CPU,Shared pool,latch)。其次提高编程效率,减少数据库的访问次数。
  • 绑定变量的缺点
  • 优化器就会忽略直方图的信息,在生成执行计划的时候可能不够优化。SQL优化相对比较困难

五、总结



1.尽可能的避免硬解析,因为硬解析需要更多的CPU资源,闩等。

2.cursor_sharing参数应权衡利弊,需要考虑使用similar与force带来的影响。

3.尽可能的使用绑定变量来避免硬解析。

********************作者: 鲍新建********************

参考:乐沙弥大神 http://blog.csdn.net/leshami/article/details/6195483

PLSQL_硬解析和解析的区别(案例)(进行SQL优化性能调优的基础,了解解析过程)

时间: 2024-10-09 23:59:28

PLSQL_硬解析和解析的区别(案例)(进行SQL优化性能调优的基础,了解解析过程)的相关文章

hbase性能调优_表设计案例

2017年2月9日, 星期四 hbase性能调优案例 1.人员-角色 人员有多个角色  角色优先级 角色有多个人员 人员 删除添加角色 角色 可以添加删除人员 人员 角色 删除添加 设计思路   person表 rowkey cf1 - 人员基本信息  cf2 - 角色列表 pid cf1:pname=;cf1:age;..  cf2:rid=n数字.优先级;... person表--举例说明 001  cf1:pname=小周;cf1:age=1;    cf2:102=0; 002  cf1

hbase性能调优案例

hbase性能调优案例 1.人员-角色 人员有多个角色  角色优先级 角色有多个人员 人员 删除添加角色 角色 可以添加删除人员 人员 角色 删除添加 设计思路 person表 rowkey cf1 - 人员基本信息  cf2 - 角色列表 pid cf1:pname=;cf1:age;..  cf2:rid=n数字.优先级;... person表--举例说明 001  cf1:pname=小周;cf1:age=1;    cf2:102=0; 002  cf1:pname=小明;cf2:age

性能调优案例分享:Mysql的cpu过高

性能调优案例分享:Mysql的cpu过高 问题:一个系统,Mysql数据库,数据量变大之后.mysql的cpu占用率很高,一个测试端访问服务器时mysql的cpu占用率为15% ,6个测试端连服务器的时候mysql cpu占用率为50%~60% .ps 1: 每个测试端所做事情就是插入记录,不过插入前会先查询一下是否已经有相同的记录,有的话就更新原有记录,没有就直接插入. ps 2: CPU--Pentium Dual E1240 @ 1.60GHZ内存--2GOS--Windows 2003调

老李分享:大数据性能调优案例

老李分享:大数据性能调优案例 1.“空间换时间”以及“内存中处理数据” 比如user_id.csv文件中有20万个不同的user_id,根据user_id去查其对应的用户最近发表的一篇帖子,取出post_id,post_title.post_time和user_id(post表中查,post表中有一列是user_id,表示帖子所属者),而帖子数目有大概两百万,那么如何处理呢?我的解决方案是:A. 先将post表post_id,post_title.post_time和user_id这四列导出到p

一文教会你数据库性能调优(附某大型医院真实案例)

原文:一文教会你数据库性能调优(附某大型医院真实案例) 前言 微软工程师的一个工程师曾经对性能调优有一个非常形象的比喻:剥洋葱 .我也非常认可,让我们来一层一层拨开外面它神秘的面纱. 六大因素 下面祭出的是我们在给客户分析数据库性能问题最常用的图. 看完这个图,你是不是对性能调优有了个基本的概念了.通常来讲我们会依照下面的顺序来进行分析: 硬件能力 系统规模 数据库内部因素 软件环境 这4个的顺序可以有所调整或者交换,但是对于系统的性能优化一定要从全局出发.切勿一来就深入到某一个SQL语句的优化

性能调优案例分享:jvm crash的原因 2

3.core dump分析 有了core dump文件,接下来要做的就是通过命令去解析此文件,定位具体问题了,主要有以下三个命令: (1)先执行gdb $JAVA_HOME$/bin/java core-java-16427-1325846515,再执行bt,输出结果如下: Loaded symbols for /opt/.../oracle/lib/libnnz10.soReading symbols from /opt/.../install/oracle/10.2.0.3/lib/libo

《高性能SQL调优精要与案例解析》一书谈主流关系库SQL调优(SQL TUNING或SQL优化)核心机制之——索引(index)

继<高性能SQL调优精要与案例解析>一书谈SQL调优(SQL TUNING或SQL优化),我们今天就谈谈各主流关系库中,占据SQL调优技术和工作半壁江山的.最重要的核心机制之一——索引(index).我们知道,<高性能SQL调优精要与案例解析>一书中也再三强调索引对SQL调优的重要性,可是上篇文章中也谈到,只看案例和解决问题的具体方法,而不掌握SQL调优的基础知识,是没有用的,我们必须做到知其然,更要知其所以然,才能做到融会贯通,活学活用,进而将SQL调优技术掌握到炉火纯青的地步.

运维实战案例之文件已删除但空间不释放问题解析

1.错误现象 运维的监控系统发来通知,报告一台服务器空间满了,登陆服务器查看,根分区确实没有空间了,如下图所示: 这里首先说明一下服务器的一些删除策略,由于Linux没有回收站功能,我们的线上服务器所有要删除的文件都会首先移动到系统/tmp目录下,然后定期清除/tmp目录下的数据.这个策略本身没有问题,但是通过检查发现这台服务器的系统分区中并没有单独划分/tmp分区,这样/tmp下的数据其实是占用了根分区的空间.既然找到了问题,那么删除/tmp目录下一些大数据即可,执行如下命令,检查/tmp下最

嵌入式实时系统—软实时和硬实时系统的定义和区别

在实时系统中,计算的正确性不仅指它的输出结果正确,还包括其输出结果的时间.实时系统必须满足响应时间限制或有能力承担严重的处理后果.如果后果是性能下降,而不是失败,这个系统就被称为软实时系统.如果结果是系统的失败,那么系统被看作硬实时系统如汽车防抱死制动系统.,也可以用实时间隔的术语取代,它用来衡量系统反映的快速性.这样看来,Windows运行系统是软实时系统,因为它相对缓慢并且不能在较短且限制时间内处理任务,在这个例子里,系统没有"失败"但是性能下降. 嵌入式实时系统-软实时和硬实时系