BZOJ 2118 墨墨的等式(最短路)

很开拓眼界的题。。

题意:给出一个n元一次方程形如a1*x1+a2*x2...+an*xn=B,求满足解集为非负整数的B值在[L,R]范围内的种数。(n<=12,ai<=5e5,L<=R<=1e12)

如果要求解集可以为负数,那么根据扩展欧几里得即可快速得到答案。

现在的问题更像一个多重背包,但是L和R太大。

首先可以把答案差分,变成求[0,R]和[0,L-1]。

我们可以这样来考虑,如果我们找到B的一个任意解m,那么m+x1,m+2*x1,,,m+k*x1..这些显然也是解。

而如果我们能找到B在模x1意义下所有的最小非负解,那么只需要把这些解加上若干个x1即可求得答案。

现在我们的问题就变成了求一个B%x1=k的最小非负解。我们令g[i]表示B%x1=i的最小整数解。

这是个最短路问题,首先有起点g[0]=0,而边就是加上的数字,比如加上一个x2,这就是一条0到x2%x1的边权为x2的边。

这样跑一遍最短路,就求出了模x1意义下的最小非负解了。

由于点的数量和x1有关,于是我们可以选择最小的xi来建图。

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <bitset>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-8
# define MOD 30031
# define INF (LL)1<<60
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<1,l,mid
# define rch p<<1|1,mid+1,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
    int x=0,f=1;char ch=getchar();
    while(ch<‘0‘||ch>‘9‘){if(ch==‘-‘)f=-1;ch=getchar();}
    while(ch>=‘0‘&&ch<=‘9‘){x=x*10+ch-‘0‘;ch=getchar();}
    return x*f;
}
const int N=500005;
//Code begin...

struct Edge{int p, next, w;}edge[N*12];
int head[N], cnt=1, a[N];
LL dist[N];
struct qnode{
    int v;
    LL c;
    qnode(int _v=0, LL _c=0):v(_v),c(_c){}
    bool operator<(const qnode &r)const{return c>r.c;}
};
bool vis[N];
priority_queue<qnode>que;
void add_edge(int u, int v, int w){
    edge[cnt].p=v; edge[cnt].w=w; edge[cnt].next=head[u]; head[u]=cnt++;
}
void Dijkstra(int n, int start){
    mem(vis,false);
    FO(i,0,n) dist[i]=INF;
    priority_queue<qnode>que;
    dist[start]=0; que.push(qnode(start,0)); qnode tmp;
    while (!que.empty()) {
        tmp=que.top(); que.pop();
        int u=tmp.v;
        if (vis[u]) continue;
        vis[u]=true;
        for (int i=head[u]; i; i=edge[i].next) {
            int v=edge[i].p, cost=edge[i].w;
            if (!vis[v]&&dist[v]>dist[u]+cost) dist[v]=dist[u]+cost, que.push(qnode(v,dist[v]));
        }
    }
}
int main ()
{
    int n;
    LL ans=0, L, R;
    scanf("%d%lld%lld",&n,&L,&R);
    FOR(i,1,n) scanf("%d",a+i);
    sort(a+1,a+n+1);
    int pos=0;
    FOR(i,1,n) if (a[i]) a[++pos]=a[i];
    if (pos==0) {puts("0"); return 0;}
    FO(i,0,a[1]) FOR(j,2,pos) {int x=i+a[j]; add_edge(i,x%a[1],x/a[1]);}
    Dijkstra(a[1],0);
    FO(i,0,a[1]) {
        LL x=dist[i]*a[1]+i;
        if (x<=R) ans+=(R-x)/a[1]+1;
        if (x<=L-1) ans-=(L-1-x)/a[1]+1;
    }
    printf("%lld\n",ans);
    return 0;
}

时间: 2024-11-05 06:09:40

BZOJ 2118 墨墨的等式(最短路)的相关文章

【BZOJ 2118】 2118: 墨墨的等式 (最短路)

2118: 墨墨的等式 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+-+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. Input 输入的第一行包含3个正整数,分别表示N.BMin.BMax分别表示数列的长度.B的下界.B的上界.输入的第二行包含N个整数,即数列{an}的值. Output 输出一个整数,表示有多少b可以使等式存在非负整数解. Sample Input 2 5 1

数论+spfa算法 bzoj 2118 墨墨的等式

2118: 墨墨的等式 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1283  Solved: 496 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. Input 输入的第一行包含3个正整数,分别表示N.BMin.BMax分别表示数列的长度.B的下界.B的上界.输入的第二行包含N个

BZOJ 2118: 墨墨的等式

2118: 墨墨的等式 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1656  Solved: 650[Submit][Status][Discuss] Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. Input 输入的第一行包含3个正整数,分别表示N.BMin.BMax分别表示数

2118: 墨墨的等式

2118: 墨墨的等式 https://www.lydsy.com/JudgeOnline/problem.php?id=2118 分析: 最短路. 题意就是判断[L,R]内多少数,可以被许多个a1,a2,a3...构成.设最小的Mi = min{ai}. 直接枚举肯定超时,那么换个方法枚举. 考虑一个能构成的数b,它一定可以分解为$b = k \times M_i + r, \ r<M_i$.而且$b + M_i$也是可以构成的.所以我们可以找到最小的%Mi=r的数,比它大的%Mi=r的数可以

BZOJ2118墨墨的等式[数论 最短路建模]

2118: 墨墨的等式 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1317  Solved: 504[Submit][Status][Discuss] Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. Input 输入的第一行包含3个正整数,分别表示N.BMin.BMax分别表示数

bzoj2118 墨墨的等式

2118: 墨墨的等式 Time Limit: 10 Sec  Memory Limit: 259 MB Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+-+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. Input 输入的第一行包含3个正整数,分别表示N.BMin.BMax分别表示数列的长度.B的下界.B的上界.输入的第二行包含N个整数,即数列{an}的值. Output 输出一个

(最短路) bzoj 2118

2118: 墨墨的等式 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 479  Solved: 183[Submit][Status][Discuss] Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. Input 输入的第一行包含3个正整数,分别表示N.BMin.BMax分别表示数列

bzoj 2118

2118: 墨墨的等式 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2390  Solved: 937[Submit][Status][Discuss] Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+-+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. Input 输入的第一行包含3个正整数,分别表示N.BMin.BMax分别表示数

BZOJ 1003 物流运输trans(最短路)

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1003 思路:m个点e条边n天.给出每条边的权值以及有些点有些天不能走.对于某连续的两天i和i+1,若两天从起点到终点选择的路径不同需要额外代价K.求最小的总代价:ans=sum(每天的代价)+K*改变的次数.每天的代价定义为这一天s到t选择的路径的长度. 思路:令cost[i][j]表示从第i天 到第j天选择一条路径的最短路,f[i]表示前i天的总代价,则f[i]=min(f[j]+c

BZOJ 1975 魔法猪学院(K短路)

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1975 题意:给出一个带权有向图.求一个最大的K使得前K短路的长度之和不大于给定的值Sum. 思路:首先,求出每个点到n的最短路.接着,使用优先队列,节点为(D,u).首先将(dis[1],1)进队.由于D在任意时候为一条1到n的路径的长度,那么对于边<u,v,w>,D-dis[u]+w+dis[v]为一条新的路径的长度. vector<pair<int,double>