Morley’s Theorem(几何+UVA11178)

题意:Morley定理,求D、E、F的坐标

思路:没什么算法,就是几何的应用。注意旋转角就好了。

转载请注明出处:寻找&星空の孩子

题目链接:UVA11178

#include<cstdio>
#include<cmath>
#define PI acos(-1.0)
using namespace std;

struct Point
{
    double x,y;
    Point(double x=0,double y=0):x(x),y(y){ }
 //   Point read_point() {scanf("%lf%lf",&this.x,&this.y);}
};
typedef Point Vector;
Vector operator + (Vector A,Vector B){return Vector(A.x+B.x,A.y+B.y);}
Vector operator - (Point A,Point B)  {return Vector(A.x-B.x,A.y-B.y);}
Vector operator * (Vector A,double p){return Vector(A.x*p,A.y*p);}
Vector operator / (Vector A,double p){return Vector(A.x/p,A.y/p);}

double Dot(Vector A,Vector B){return A.x*B.x+A.y*B.y;}
double length(Vector A){return sqrt(Dot(A,A));}
double Angle(Vector A,Vector B){return acos(Dot(A,B)/length(A)/length(B));}

double Cross(Vector A,Vector B){return A.x*B.y-B.x*A.y;}

Vector Rotate (Vector A,double rad)
{
    //其中rad为逆时针旋转角
    return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));
}

Point GetLineIntersection(Point P,Vector v,Point Q,Vector w)
{
    Vector u=P-Q;
    if(Cross(v,w))
    {
        double t=Cross(w,u)/Cross(v,w);//精度高的时候,考虑自定义分数类
        return P+v*t;
    }
//    else
 //       return ;
}

Point getD(Point A,Point B,Point C)
{
    Vector v1=C-B;
    double a1=Angle(A-B,v1);
    v1=Rotate(v1,a1/3);

    Vector v2=B-C;
    double a2=Angle(A-C,v2);
    v2=Rotate(v2,-a2/3);//-表示顺时针旋转;

    return GetLineIntersection(B,v1,C,v2);

}

Point read_point(Point &P)
{
    scanf("%lf%lf",&P.x,&P.y);
    return P;
}
int main()
{
    int T;
    Point A,B,C,D,E,F;
    scanf("%d",&T);
    while(T--)
    {
        A=read_point(A);
        B=read_point(B);
        C=read_point(C);

//        scanf("%lf%lf%lf%lf%lf%lf",&A.x,&A.y,&B.x,&B.y,&C.x,&C.y);
//        printf("%.6lf %.6lf %.6lf %.6lf %.6lf %.6lf\n",A.x,A.y,B.x,B.y,C.x,C.y);
        D=getD(A,B,C);
        E=getD(B,C,A);
        F=getD(C,A,B);
        printf("%.6lf %.6lf %.6lf %.6lf %.6lf %.6lf\n",D.x,D.y,E.x,E.y,F.x,F.y);
    }
    return 0;
}
时间: 2024-10-21 15:44:32

Morley’s Theorem(几何+UVA11178)的相关文章

UVa 11178 Morley&#39;s Theorem (几何问题)

题意:给定三角形的三个点,让你求它每个角的三等分线所交的顶点. 析:根据自己的以前的数学知识,应该很容易想到思想,比如D点,就是应该求直线BD和CD的交点, 以前还得自己算,现在计算机帮你算,更方便,主要注意的是旋转是顺时针还是逆时针,不要搞错了. 要求BD和CD就得先求那个夹角ABC和ACD,然后三等分. 代码如下: #include <iostream> #include <cstdio> #include <cstring> #include <cmath&

Morley&#39;s Therorem(UVA11178+几何)

题意:Morley定理,求D.E.F的坐标 思路:没什么算法,就是几何的应用.注意旋转角就好了. 转载请注明出处:寻找&星空の孩子 题目链接:UVA11178 1 #include<cstdio> 2 #include<cmath> 3 #define PI acos(-1.0) 4 using namespace std; 5 6 struct Point 7 { 8 double x,y; 9 Point(double x=0,double y=0):x(x),y(y)

11178 - Morley&#39;s Theorem【几何】

不涉及什么算法,只是简单的套用模板进行计算. 如果一个向量进行逆时针旋转,那么可以使用定义的函数 Rotate(v,rad)进行计算. 但是如果进行顺时针旋转,那么需要将rad改为-rad,也就是Rotate(v,-rad)进行计算. 精度的控制为 1e-10; 14112243 11178 Morley's Theorem Accepted C++ 0.055 2014-08-29 11:09:31 #include<cstdio> #include<cstring> #incl

简单几何 UVA 11178 Morley&#39;s Theorem

题目传送门 题意:莫雷定理,求三个点的坐标 分析:训练指南P259,用到了求角度,向量旋转,求射线交点 /************************************************ * Author :Running_Time * Created Time :2015/10/21 星期三 15:56:27 * File Name :UVA_11178.cpp ************************************************/ #include

UVA11178 Morley&#39;s Theorem(基础模板)

题目链接 题意:给出A,B, C点坐标求D,E,F坐标,其中每个角都被均等分成三份   求出 ABC的角a, 由 BC 逆时针旋转 a/3 得到BD,然后 求出 ACB 的角a2, 然后 由 BC顺时针 旋转 a2 / 3得到 DC,然后就交点 1 #include <iostream> 2 #include <cstdio> 3 #include <algorithm> 4 #include <cstring> 5 #include <cmath&g

UVA11178 Morley&#39;s Theorem

题意 PDF 分析 就按题意模拟即可,注意到对称性,只需要知道如何求其中一个. 注意A.B.C按逆时针排列,利用这个性质可以避免旋转时分类讨论. 时间复杂度\(O(T)\) 代码 #include<iostream> #include<cstdio> #include<cstdlib> #include<cmath> #include<set> #include<map> #include<queue> #include&

UVA 11178 Morley&#39;s Theorem 计算几何

计算几何: 最基本的计算几何,差积  旋转 Morley's Theorem Time Limit: 3000MS Memory Limit: Unknown 64bit IO Format: %lld & %llu Submit Status Description Problem D Morley's Theorem Input: Standard Input Output: Standard Output Morley's theorem states that that the line

UVA 11178 Morley&#39;s Theorem(旋转+直线交点)

题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=18543 [思路] 旋转+直线交点 第一个计算几何题,照着书上代码打的. [代码] 1 #include<cstdio> 2 #include<cmath> 3 #include<cstring> 4 using namespace std; 5 6 7 struct Pt { 8 double x,y; 9 Pt(double x=0,d

UVA - 11178 - Morley&#39;s Theorem (计算几何~~)

UVA - 11178 Morley's Theorem Time Limit: 3000MS Memory Limit: Unknown 64bit IO Format: %lld & %llu Submit Status Description Problem D Morley's Theorem Input: Standard Input Output: Standard Output Morley's theorem states that that the lines trisecti

UVa 11178 (简单练习) Morley&#39;s Theorem

题意: Morley定理:任意三角形中,每个角的三等分线,相交出来的三个点构成一个正三角形. 不过这和题目关系不大,题目所求是正三角形的三个点的坐标,保留6位小数. 分析: 由于对称性,求出D点,EF也是同样的. 用点和向量的形式表示一条直线,向量BA.BC的夹角为a1,则将BC逆时针旋转a1/3可求得 直线BD,同理也可求得直线CD,最后再求交点即可. 1 //#define LOCAL 2 #include <cstdio> 3 #include <cstring> 4 #in