UESTC 883 方老师与两个串

CF原题

由题可知,n,m太大,无法开出dp[n][m]的数组。

观察发现s/e最大为300,也就是说,选用第一种操作的次数不会超过300。

于是定义dp[i][j],第一个串的前i个数,使用了j次第一种操作的时候,第二个串最少删了多少个数。

转移有两种情况:

1.当前位置不删,这时dp[i][j]=dp[i-1][j];

2.当前位置删,此时就需要在B串中找和当前位置的数相同的数的位置,并且只有在找到的位置大于dp[i-1][j-1]的时候才是可行的。为了保证dp[i][j]最小,显然就是找大于dp[i-1][j-1]这个位置的第一个和当前数相同的数。

二分查找解决,lower_bound或upper_bound解决更加简便。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#define Mod 1000000007
using namespace std;
#define N 100007

int dp[N][305];
int a[N],b[N];
vector<int> v[N];

int main()
{
int n,m,s,e;
int i,j;
scanf("%d%d%d%d",&n,&m,&s,&e);
for(i=1;i<=n;i++)
scanf("%d",&a[i]);
for(i=1;i<=m;i++)
{
scanf("%d",&b[i]);
v[b[i]].push_back(i);
}
int S = s/e;
for(i=1;i<=n;i++)
{
dp[i][0] = -1;
for(j=1;j<=S;j++)
dp[i][j] = Mod;
}
for(i=1;i<=m;i++) //a的第一个对应的最小位置
{
if(b[i] == a[1])
{
dp[1][1] = i;
break;
}
}
//meiju
vector<int>::iterator it;
for(i=2;i<=n;i++)
{
for(j=1;j<=S;j++)
{
dp[i][j] = min(dp[i][j],dp[i-1][j]); //当前位置不删
it = upper_bound(v[a[i]].begin(),v[a[i]].end(),dp[i-1][j-1]);
if(it != v[a[i]].end()) //如果能找到,更新最小位置
dp[i][j] = min(dp[i][j],*it);
}
}
int res = -Mod;
for(i=1;i<=n;i++)
{
for(j=0;j<=S;j++)
{
if(i + dp[i][j] + j*e <= s) //满足能量范围
res = max(res,j);
}
}
printf("%d\n",res);
return 0;
}

UESTC 883 方老师与两个串,布布扣,bubuko.com

时间: 2024-12-12 09:12:30

UESTC 883 方老师与两个串的相关文章

UESTC 899 方老师和农场 --双连通分量的构造

首先将原图中的连通分量缩点,一定可以将原图缩成一棵树的形式,然后统计这棵树的叶子节点个数,答案就是(leaf+1)/2.这里不再证明,可以画个图看一下. (简单说明一下,首先把两个最近公共祖先最远的两个叶节点之间连接一条边,这样可以把这两个点到祖先的路径上所有点收缩到一起,因为一个形成的环一定是双连通的.然后再找两个最近公共祖先最远的两个叶节点,这样一对一对找完,恰好是(leaf+1)/2次,把所有点收缩到了一起.  --Byvoid) 怎么统计呢?用并查集缩点,可以知道,缩点后留下的边全部是原

UESTC 914 方老师的分身I Dijkstra

题意:求有向图的往返最短路的最长长度. 分析:求第一次到所有点的距离可以用一次Dijkstra求最短路求出来.考虑回来的路,想想就知道,从每个点回来的路即为将边的方向反转再求一次最短路后的结果. 所以此题为求两次最短路. 代码: #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #define Mod 100

UESTC 915 方老师的分身II --最短路变形

即求从起点到终点至少走K条路的最短路径. 用两个变量来维护一个点的dis,u和e,u为当前点的编号,e为已经走过多少条边,w[u][e]表示到当前点,走过e条边的最短路径长度,因为是至少K条边,所以大于K条边的当做K条边来处理就好了.求最短路的三个算法都可以做,我这里用的是SPFA,比较简洁. 代码: #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #incl

UESTC 884 方老师的专题讲座

数位DP问题. 定义:cnt[L][K]表示长度为L,最高位为K的满足条件C的个数. 首先预处理出cnt数组,枚举当前长度最高位和小一个长度的最高位,如果相差大于2则前一个加上后一个的方法数. 然后给定n,计算[1,n-1]中满足条件C的数的个数. 设有K位数,则不足K位的累加,然后枚举K位数的情况,从高位到低位枚举,每次枚举到比该位小1的数,注意:如果某时刻该数中有两位相差大于2,则再枚举下去已经没有意义,因为以后的数再也不会满足条件C,这时退出即可. 代码: #include <iostre

UESTC 885 方老师买表

显然是一个状压DP. 将方格的摆放分成两种: 1.水平摆放:此时所占的两个格子都记为1. 2.竖直摆放:此时底下那个格子记为1,上面那个记为0. 这样的话,每行都会有一个状态表示. 定义:dp[i][s]表示考虑已经填到第i行,这一行状态为s的方法数 转移:dp[i][s] = dp[i][s]+dp[i-1][s']  (s'为上一行的状态,当第i行和第i-1行能够满足条件时,进行转移) 先预处理出所有满足条件的第一行,然后从第二行开始转移. 最后答案为dp[n][(1<<m)-1]. 当n

UESTC 916 方老师的分身III --拓扑排序

做法: 如果有a<b的关系,则连一条a->b的有向边,连好所有边后,找入度为0的点作为起点,将其赋为最小的价值888,然后其所有能到的端点,价值加1,加入队列,删去上一个点,然后循环往复,直到队列为空,即每个点都赋予了一个权值为止. 代码: #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #in

UESTC 901 方老师抢银行 --Tarjan求强连通分量

思路:如果出现了一个强连通分量,那么走到这个点时一定会在强连通分量里的点全部走一遍,这样才能更大.所以我们首先用Tarjan跑一遍求出所有强连通分量,然后将强连通分量缩成点(用到栈)然后就变成了一个DAG(有向无环图),然后跑一遍DFS,不断加上遍历点的权值,如果到了网吧,则更新一遍答案,因为可以出去了. 求强连通分量时,如果low[u] == dfn[u],说明形成了一个新的强连通分量,且根为u.具体求强连通分量见:http://www.cnblogs.com/whatbeg/p/377642

UESTC 900 方老师炸弹 --Tarjan求割点及删点后连通分量数

Tarjan算法. 1.若u为根,且度大于1,则为割点 2.若u不为根,如果low[v]>=dfn[u],则u为割点(出现重边时可能导致等号,要判重边) 3.若low[v]>dfn[u],则边(u,v)为桥(封死在子树内),不操作. 求割点时,枚举所有与当前点u相连的点v: 1.是重边: 忽略 2.是树边: Tarjan(v),更新low[u]=min(low[u],low[v]); 子树个数cnt+1.如果low[v] >= dfn[u],说明是割点,割点数+1 3.是回边: 更新lo

UESTC 917 方老师的分身IV --求欧拉路径

判断欧拉路径是否存在及求出字典序最小的欧拉路径问题(如果存在). 将字符串的第一个字母和最后一个字母间连边,将字母看成点,最多可能有26个点(a-z),如果有欧拉路径,还要判断是否有欧拉回路,如果有,则需要找一个字典序最小的点开始生成这条链,否则以起点开始生成链,起点即为出度比入度大1的点. 欧拉路径是否存在的判定: 1.全部点在一个联通块                               ----用并查集判联通块的数量2.所有点出度入度相等