特征值的理解

迷惑很久,终于想通。
其实是一种数据的处理方法,可以简化数据。矩阵乘特征向量就是在其方向的投影。这点类似于向量点积既是投影。
通过求特征值和向量,把矩阵数据投影在一个正交的空间,而且投影的大小就是特征值。这样就直观体现了数据的基本特征。
最大特征值并不是说数据在所有方向的投影的最大值,而仅限于正交空间的某一方向。
至于为什么求出来的特征向量是正交的,可以证明。
有没有其他的正交空间,一般矩阵,满足满秩,只有一个这样的空间。
会不会有更好的空间来体现数据的特征,一般来说,正交空间就很好,不排除特殊应用需要非正交的空间,可能会更好。

时间: 2024-10-13 16:15:09

特征值的理解的相关文章

线性代数精华——矩阵的特征值与特征向量

今天和大家聊一个非常重要,在机器学习领域也广泛使用的一个概念--矩阵的特征值与特征向量. 我们先来看它的定义,定义本身很简单,假设我们有一个n阶的矩阵A以及一个实数\(\lambda\),使得我们可以找到一个非零向量x,满足: \[Ax=\lambda x\] 如果能够找到的话,我们就称\(\lambda\)是矩阵A的特征值,非零向量x是矩阵A的特征向量. 几何意义 光从上面的式子其实我们很难看出来什么,但是我们可以结合矩阵变换的几何意义,就会明朗很多. 我们都知道,对于一个n维的向量x来说,如

某部分方阵的特征值理解

以二维情况为例,假设我们研究两类方阵,一类是旋转变换矩阵R,一类是缩放变换矩阵S.用“坐标系不变,向量变化”的角度来看,y=Rx将原向量x旋转某个角度得到新向量y,y=Sx将原向量x的x分量与y分量分别缩放S11倍和S22倍,然后再合成得到新向量y. 接下来我们进一步看看S.y与x不一定同方向,有两种情况例外.第一种是S11的绝对值=S22的绝对值,这样x的x分量和y分量得到相同的缩放倍数,合成得到的新向量y自然与x平行,这种情况是限制了S,也就是限制了向量操作.另一种例外情况是,原向量x恰好与

基于梯度场和Hessian特征值分别获得图像的方向场

一.?我们想要求的方向场的定义为: 对于任意一点(x,y),该点的方向可以定义为其所在脊线(或谷线)位置的切线方向与水平轴之间的夹角: 将一条直线顺时针或逆时针旋转 180°,直线的方向保持不变. 因此,指纹方向场的取值范围一般定义为[0,π)或[-π/2, π/2),前闭后开区间的意义在于保证方向场取值的唯一性. 二.基于梯度场计算方向场 论文 <Analyzing Oriented Patterns> 网址:https://wenku.baidu.com/view/f741d931cc17

浅浅地聊一下矩阵与线性映射及矩阵的特征值与特征向量

都说矩阵其实就是线性映射,你明白不?反正一开始我是不明白的: 线性映射用矩阵表示:(很好明白的) 有两个线性空间,分别为V1与V2, V1的一组基表示为,V2的一组基表示为:(注意哦,维度可以不一样啊,反正就是线性空间啊), 1, 现在呢,有一个从V1到V2的映射F, 它可以把V1中的一组基都映射到线性空间V2中去,所以有: 用矩阵可以表示为: 2,现在我们把在V1中有一个向量A,经过映射F变为了向量B,用公式表示为:                                 所以呢,坐标

理解矩阵【转】 作者:孟岩

编者按:想要机器学习,线性代数必要先行,至于为何,不如看看这篇文章,肯定会有所启发的.同时本站推荐MIT Strang的线性代数公开课:http://v.163.com/special/opencourse/daishu.html,同时推荐他的两本教材(号称北美最流行):<Introduction to Linear Algebra>, 4th Edition by Gilbert Strang, <Linear Algebra and Its Applications>, 4th

《深入理解mybatis原理》 MyBatis的一级缓存实现详解 及使用注意事项

0.写在前面 MyBatis是一个简单,小巧但功能非常强大的ORM开源框架,它的功能强大也体现在它的缓存机制上.MyBatis提供了一级缓存.二级缓存 这两个缓存机制,能够很好地处理和维护缓存,以提高系统的性能.本文的目的则是向读者详细介绍MyBatis的一级缓存,深入源码,解析MyBatis一级缓存的实现原理,并且针对一级缓存的特点提出了在实际使用过程中应该注意的事项. 读完本文,你将会学到: 1.什么是一级缓存?为什么使用一级缓存? 2.MyBatis的一级缓存是怎样组织的?(即SqlSes

关于fisher判别的一点理解

最近一个朋友问这方面的一些问题,其实之前也就很粗略的看了下fisher,真正帮别人解答问题的时候才知道原来自己也有很多东西不懂.下面小结下自己对fisher判别的理解: 其实fisher和PCA差不多,熟悉PCA的人都知道,PCA其实就是在寻找一个子空间.这个空间怎么来的呢,先求协方差矩阵,然后求这个协方差矩阵的特征空间(特征向量对应的空间),选取最大的特征值对应的特征向量组成特征子空间(比如说k个,相当于这个子空间有k维,每一维代表一个特征,这k个特征基本上可以涵盖90%以上的信息).那么我们

【转载】理解矩阵(一)

原文:理解矩阵(一) 前不久chensh出于不可告人的目的,要充当老师,教别人线性代数.于是我被揪住就线性代数中一些务虚性的问题与他讨论了几次.很明显,chensh觉得,要让自己在讲线性代数的时候不被那位强势的学生认为是神经病,还是比较难的事情. 可怜的chensh,谁让你趟这个地雷阵?!色令智昏啊! 线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙.比如说,在全国一般工科院系教学中应用最广泛的同济线性代数教材(现在到了第四版),一上来就介绍逆序数这个“前无古人,后无

矩阵的特征向量和特征值

[1. 特征的数学意义]        我们先考察一种线性变化,例如x,y坐标系的椭圆方程可以写为x^2/a^2+y^2/b^2=1,那么坐标系关于原点做旋转以后,椭圆方程就要发生变换.我们可以把原坐标系的(x,y)乘以一个矩阵,得到一个新的(x',y')的表示形式,写为算子的形式就是(x,y)*M=(x',y').这里的矩阵M代表一种线性变换:拉伸,平移,旋转.那么,有没有什么样的线性变换b(b是一个向量),使得变换后的结果,看起来和让(x,y)*b像是一个数b乘以了一个数字m*b? 换句话说