区间求和

区间求和

基准时间限制:1 秒 空间限制:131072 KB 分值: 80

LYK在研究一个有趣的东西。

假如有一个长度为n的序列,那么这个序列的权值将是所有有序二元组i,j的 Σaj−ai 其中1<=i<j<=n。

但是这个问题似乎太简单了。

于是LYK想在所有有序二元组k,l中若ak=al,其中1<=k<l<=n,则将 a{k},a{k+1},...,a{l}  提出当做一个序列,计算它的权值。

并统计所有这样的区间的权值和。

由于答案可能很大,你只需要将答案对2^32取模即可。

建议使用读入优化。

Input

第一行一个整数n(1<=n<=1000000),接下来一行n个数ai(1<=ai<=1000000)表示LYK的序列。

Output

一行表示答案。

Input示例

5
3 4 5 5 3

Output示例

2分析:区间[l,r]对x(l<=x<=r)的贡献次数为2*x-l-r;   所以维护前缀和,后缀和,然后对每个数算贡献即可;   注意取模2^32等价于unsigned long long的溢出;代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <unordered_map>
#include <queue>
#include <stack>
#include <vector>
#include <list>
#define rep(i,m,n) for(i=m;i<=n;i++)
#define rsp(it,s) for(set<int>::iterator it=s.begin();it!=s.end();it++)
#define mod 1000000007
#define inf 0x3f3f3f3f
#define vi vector<int>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define pi acos(-1.0)
#define pii pair<int,int>
#define Lson L, mid, ls[rt]
#define Rson mid+1, R, rs[rt]
#define sys system("pause")
#define intxt freopen("in.txt","r",stdin)
const int maxn=1e6+10;
using namespace std;
ll gcd(ll p,ll q){return q==0?p:gcd(q,p%q);}
ll qpow(ll p,ll q){ll f=1;while(q){if(q&1)f=f*p;p=p*p;q>>=1;}return f;}
inline ll read()
{
    ll x=0;int f=1;char ch=getchar();
    while(ch<‘0‘||ch>‘9‘){if(ch==‘-‘)f=-1;ch=getchar();}
    while(ch>=‘0‘&&ch<=‘9‘){x=x*10+ch-‘0‘;ch=getchar();}
    return x*f;
}
int n,m,k,t,a[maxn];
ll suml[maxn],sumr[maxn],numl[maxn],numr[maxn],pos[maxn],pre[maxn],f[maxn],fl[maxn],fr[maxn];
unsigned ll ans;
int main()
{
    int i,j;
    scanf("%d",&n);
    rep(i,1,n)a[i]=read();
    rep(i,1,n)
    {
        numl[i]=numl[pos[a[i]]]+1;
        suml[i]=suml[pos[a[i]]]+i;
        pos[a[i]]=i;
    }
    memset(pos,0,sizeof(pos));
    for(i=n;i>=1;i--)
    {
        numr[i]=numr[pos[a[i]]]+1;
        sumr[i]=sumr[pos[a[i]]]+i;
        pos[a[i]]=i;
    }
    rep(i,1,n)
    {
        fl[i]=fl[i-1];
        fl[i]+=i*numr[i];
        fl[i]-=suml[i-1];
        f[i]=f[i-1]+numr[i]-numl[i-1];
    }
    for(i=n;i>=1;i--)
    {
        fr[i]=fr[i+1];
        fr[i]+=i*numl[i];
        fr[i]-=sumr[i+1];
        ans=ans+a[i]*(2*i*f[i]-fl[i]-fr[i]);
    }
    printf("%u\n",ans);
    //system("Pause");
    return 0;
}
时间: 2024-09-30 10:03:45

区间求和的相关文章

HDU4027 Can you answer these queries 线段树区间求和+剪枝

给了你n,然后n个数字在一个数组中,接下来m个询问,每个询问三个数字 t,x,y,若t==0,那么修改区间[x,y]的每一个值,变为原来每个位置上的数 开根号取整,若t==1,那么对区间[x,y]求和 由于n,m,很大,所以树状数组铁定超时,若直接用线段树来做区间修改,那么也是超时,这类题目没别的方法了,静心剪枝,发现题目给的数据范围为2^63,有没有发现,2^63开根号 绝对不需要开10次,就能到1,到1以后就不需要再开了,意思就是若有某个区间[x,y]每一个点的值都为1时,这一段区间事实上是

【线段树(单点修改,区间求和)】HDU1166 - 敌军布阵

hdu1166 敌兵布阵,单点修改,区间求和. [ATTENTION]MAXN要开成节点数的4倍,开得不够会提示TLE. 1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #define lson l,m,root<<1 5 #define rson m+1,r,root<<1|1 6 using namespace std; 7 const int MAXN=50000*

算法模板——线段树3(区间覆盖值+区间求和)

实现功能——1:区间覆盖值:2:区间求和 相比直接的区间加,这个要注重顺序,因为操作有顺序之分.所以这里面的tag应该有个pushup操作(本程序中的ext) 1 var 2 i,j,k,l,m,n,a1,a2,a3,a4:longint; 3 a,b,d:array[0..100000] of longint; 4 function max(x,y:longint):longint;inline; 5 begin 6 if x>y then max:=x else max:=y; 7 end;

算法模板——线段树4(区间加+区间乘+区间覆盖值+区间求和)

实现功能——1:区间加法 2:区间乘法 3:区间覆盖值 4:区间求和 这是个四种常见线段树功能的集合版哦...么么哒(其实只要协调好三种tag的关系并不算太难——前提是想明白了线段树的工作模式) 代码长度几经修改后也大为缩水 还有!!!——通过BZOJ1798反复的尝试,我的出来一个重要结论——尽量减少pushup操作的不必要使用次数,对于程序提速有明显的效果!!! 1 type vet=record 2 a0,a1:longint; 3 end; 4 var 5 i,j,k,l,m,n,a1,

算法模板——线段树1(区间加法+区间求和)

实现功能——1:区间加法:2:区间求和 最基础最经典的线段树模板.由于这里面操作无顺序之分,所以不需要向下pushup,直接累积即可 1 var 2 i,j,k,l,m,n,a1,a2,a3,a4:longint; 3 a,b:array[0..100000] of longint; 4 function max(x,y:longint):longint;inline; 5 begin 6 if x>y then max:=x else max:=y; 7 end; 8 function min

vijos1740 聪明的质监员 (二分、区间求和)

http://www.rqnoj.cn/problem/657 https://www.vijos.org/p/1740 P1740聪明的质检员 请登录后递交 标签:NOIP提高组2011[显示标签] 描述 小 T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有n个矿石,从1到n逐一编号,每个矿石都有自己的重量wi以及价值vi.检验矿产的流程是: 1.给定m个区间[Li,Ri]: 2.选出一个参数W: 3.对于一个区间[Li,Ri],计算矿石在这个区间上的检验值Yi: Yi = ∑1

CodeForces 52C Circular RMQ(区间循环线段树,区间更新,区间求和)

转载请注明出处:http://blog.csdn.net/u012860063 题目链接:http://codeforces.com/problemset/problem/52/C You are given circular array a0,?a1,?...,?an?-?1. There are two types of operations with it: inc(lf,?rg,?v) - this operation increases each element on the segm

[用CDQ分治解决区间加&amp;区间求和]【习作】

[前言] 作为一个什么数据结构都不会只会CDQ分治和分块的蒟蒻,面对区间加&区间求和这么难的问题,怎么可能会写线段树呢 于是,用CDQ分治解决区间加&区间求和这篇习作应运而生 [Part.I]区间加&区间求和的数据结构做法 [一]线段树 裸题... 1141ms #include <iostream> #include <cstdio> #include <algorithm> #include <cstring> #include

HDU 4027 Can you answer these queries? (线段树区间求和)

Can you answer these queries? Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others)Total Submission(s): 12290    Accepted Submission(s): 2912 Problem Description A lot of battleships of evil are arranged in a line before

poj 3468 线段树 成段增减 区间求和

题意:Q是询问区间和,C是在区间内每个节点加上一个值 Sample Input 10 51 2 3 4 5 6 7 8 9 10Q 4 4Q 1 10Q 2 4C 3 6 3Q 2 4Sample Output 455915 1 # include <iostream> 2 # include <cstdio> 3 # include <cstring> 4 # include <algorithm> 5 # include <cmath> 6