【数据结构与算法】递归汉诺塔

汉诺塔

汉诺塔是根据一个传说形成的数学问题(关于汉诺塔):

有三根杆子A,B,C。A杆上有N个(N>1)穿孔圆盘,盘的尺寸由下到上依次变小。要求按下列规则将所有圆盘移至C杆:

每次只能移动一个圆盘;

大盘不能叠在小盘上面。

提示:可将圆盘临时置于B杆,也可将从A杆移出的圆盘重新移回A杆,但都必须遵循上述两条规则。

递归汉诺塔

解题思路:

可以把问题简化成2个盘子的情况,如:A上有两个盘子,B和C是空的。如果要把A的两个盘子全部移动到C,需要经过以下步骤:

1.A移动一个盘子到B

2.A移动一个盘子到C

3.B移动一个盘子到C

到这里已经把所有盘子移动到C盘,其实可以把底盘上面的盘子看成一个整体,这就简化成3步了,然后使用递归重复这3个步骤就完成了所有盘子的位移。

使用递归解汉诺塔,并实时打印每一步的变化和计算步数。

时间: 2024-10-05 18:32:47

【数据结构与算法】递归汉诺塔的相关文章

【数据结构与算法】汉诺塔算法——java递归实现

汉诺塔的递归实现算法,将A中的圆盘借助B圆盘完全移动到C圆盘上, 每次只能移动一个圆盘,并且每次移动时大盘不能放在小盘上面 递归函数的伪算法为如下: if(n == 1)    直接将A柱子上的圆盘从A移动到C else    先将A柱子上的n-1个圆盘借助C柱子移动到B柱子上    直接将A柱子上的第n个圆盘移动到C柱子上    最后将B柱子上的n-1个圆盘借助A柱子移动到C柱子上 该递归算法的时间复杂度为O(2的n次方),当有n个圆盘时,需要移动圆盘2的n次方-1次 public class

2017.11.26 计算机算法之分治与递归——汉诺塔

1.我的递归算法(纯粹的递归) #include <stdio.h>//当盘子数n等于15时,移动次数已经达到32767,运行时间已经达到15.540s long long count; void hanoi(int n,char a,char b,char c)//借助C将A上的盘子全部移动到B { if(n==0) return; hanoi(n-1,a,c,b); printf("%c --> %c\n",a,b); count++; hanoi(n-1,c,b

韩顺平_PHP程序员玩转算法公开课(第一季)01_算法重要性_五子棋算法_汉诺塔_回溯算法_学习笔记_源代码图解_PPT文档整理

文西马龙:http://blog.csdn.net/wenximalong/ 课程说明:算法是程序的灵魂,为什么有些网站能够在高并发,和海量吞吐情况下依然坚如磐石,大家可能会说: 网站使用了服务器集群技术.数据库读写分离和缓存技术(比如memcahced和redis等),那如果我再深入的问一句,这些优化技术又是怎样被那些天才的技术高手设计出来的呢? 我在上大学的时候就在想,究竟是什么让不同的人写出的代码从功能看是一样的,但从运行效率上却有天壤之别, 就拿以前在软件公司工作的实际经历来说吧, 我是

算法:汉诺塔

[递归经典题目]汉诺塔算法 Java实现 汉诺塔非递归算法

Acdream 1219 The Towers of Hanoi Revisited(递归汉诺塔问题)

传送门 The Towers of Hanoi Revisited Special Judge Time Limit: 2000/1000MS (Java/Others) Memory Limit: 128000/64000KB (Java/Others) Submit Statistic Next Problem Problem Description You all must know the puzzle named "The Towers of Hanoi". The puzz

【数据结构】2、汉诺塔

/* *功能:假设有3个塔座x y z,在x上插有n个直径大小各不相同.从小到大编号为1 - n的圆盘,要求将x轴上的n个圆盘移动到z轴并按同样顺序排列,移动圆盘须遵循以下规则: 1).每次只能移动一个圆盘: 2).圆盘可插在x y z中的任一塔座上: 3).任何时刻不能将一个较大的圆盘压在较小的圆盘上: *文件:hanoi.cpp *时间:2015年7月6日20:22:29 *作者:cutter_point */ #include <iostream> using namespace std

递归汉诺塔

/*汉诺塔的玩法: * 游戏的规则:将A柱上的盘子移动到C柱上,大盘必须在小盘之上. * 1 当A柱上只有一个盘子的时候,直接移动到C柱上: * 2 当A柱上有两个盘子的时候, *   将A柱上的1盘(从上到下编号)移动到B柱, *   将A柱上的2盘移动到C柱, *   将B柱上的1盘移动到C柱: *   (将A上的1~n-1盘---->B柱,将A柱上n---->C柱,B柱上的1~n-1盘---->C柱) * 3 当A柱上有三个盘子的时候,将A柱上的1~2盘移动到B柱, *   将A柱

递归——汉诺塔问题(python实现)

规则 每次移动一个盘子 任何时候大盘子在下面,小盘子在上面 方法 假设共n个盘子 当n=1时: 直接把A上的一个盘子移动到C上(A->C) 当n=2时: 把小盘子从A放到B上(A->B)这里开始采用参数,rsc源地址=A,dst目的地址=B 把大盘子从A放到C上( A->C)rsc=A, dst=C 把小盘子从B放到C上(B->C)rsc=B, dst=C 当n=3时: 把A上的两个盘子,通过C移动到B上去, 调用递归实现(A-C->B)rsc=A, trans中转=C, d

递归--汉诺塔问题 (Hanoi)

汉诺塔问题(Hanoi):古代有一个梵塔,塔内有三个座A.B.C,A座上有64个盘子,盘子大小不等,大的在下,小的在上(如图).有一个和尚想把这64个盘子从A座移到C座,但每次只能允许移动一个盘子,并且在移动过程中,3个座上的盘子始终保持大盘在下,小盘在上.在移动过程中可以利用B座,要求输出移动的步骤 . 结题思路:利用递归思想结题,就是找出其每步的共同规律,然后必须有一步是递归的终止条件. 先假设第一种情况:3根柱,从左到右A,B,C,上面小号,底部大号,从上往下递增. 如要完成该任务,经历3