机器学习实战之 第七章 集成方法(随机森林和 AdaBoost)

第7章 集成方法 ensemble method

集成方法: ensemble method(元算法: meta algorithm) 概述

  • 概念:是对其他算法进行组合的一种形式。
  • 通俗来说: 当做重要决定时,大家可能都会考虑吸取多个专家而不只是一个人的意见。 机器学习处理问题时又何尝不是如此? 这就是集成方法背后的思想。
  • 集成方法:
    1. 投票选举(bagging: 自举汇聚法 bootstrap aggregating): 是基于数据随机重抽样分类器构造的方法
    2. 再学习(boosting): 是基于所有分类器的加权求和的方法

集成方法 场景

目前 bagging 方法最流行的版本是: 随机森林(random forest)
选男友:美女选择择偶对象的时候,会问几个闺蜜的建议,最后选择一个综合得分最高的一个作为男朋友

目前 boosting 方法最流行的版本是: AdaBoost
追女友:3个帅哥追同一个美女,第1个帅哥失败->(传授经验:姓名、家庭情况) 第2个帅哥失败->(传授经验:兴趣爱好、性格特点) 第3个帅哥成功

bagging 和 boosting 区别是什么?

  1. bagging 是一种与 boosting 很类似的技术, 所使用的多个分类器的类型(数据量和特征量)都是一致的。
  2. bagging 是由不同的分类器(1.数据随机化 2.特征随机化)经过训练,综合得出的出现最多分类结果;boosting 是通过调整已有分类器错分的那些数据来获得新的分类器,得出目前最优的结果。
  3. bagging 中的分类器权重是相等的;而 boosting 中的分类器加权求和,所以权重并不相等,每个权重代表的是其对应分类器在上一轮迭代中的成功度。

随机森林

随机森林 概述

  • 随机森林指的是利用多棵树对样本进行训练并预测的一种分类器。
  • 决策树相当于一个大师,通过自己在数据集中学到的知识用于新数据的分类。但是俗话说得好,一个诸葛亮,玩不过三个臭皮匠。随机森林就是希望构建多个臭皮匠,希望最终的分类效果能够超过单个大师的一种算法。

随机森林 原理

那随机森林具体如何构建呢?
有两个方面:

  1. 数据的随机性化
  2. 待选特征的随机化

使得随机森林中的决策树都能够彼此不同,提升系统的多样性,从而提升分类性能。

数据的随机化:使得随机森林中的决策树更普遍化一点,适合更多的场景。

(有放回的准确率在:70% 以上, 无放回的准确率在:60% 以上)

  1. 采取有放回的抽样方式 构造子数据集,保证不同子集之间的数量级一样(不同子集/同一子集 之间的元素可以重复)
  2. 利用子数据集来构建子决策树,将这个数据放到每个子决策树中,每个子决策树输出一个结果。
  3. 然后统计子决策树的投票结果,得到最终的分类 就是 随机森林的输出结果。
  4. 如下图,假设随机森林中有3棵子决策树,2棵子树的分类结果是A类,1棵子树的分类结果是B类,那么随机森林的分类结果就是A类。

待选特征的随机化

  1. 子树从所有的待选特征中随机选取一定的特征。
  2. 在选取的特征中选取最优的特征。

下图中,蓝色的方块代表所有可以被选择的特征,也就是目前的待选特征;黄色的方块是分裂特征。
左边是一棵决策树的特征选取过程,通过在待选特征中选取最优的分裂特征(别忘了前文提到的ID3算法,C4.5算法,CART算法等等),完成分裂。
右边是一个随机森林中的子树的特征选取过程。

随机森林 开发流程

收集数据:任何方法
准备数据:转换样本集
分析数据:任何方法
训练算法:通过数据随机化和特征随机化,进行多实例的分类评估
测试算法:计算错误率
使用算法:输入样本数据,然后运行 随机森林 算法判断输入数据分类属于哪个分类,最后对计算出的分类执行后续处理

随机森林 算法特点

优点:几乎不需要输入准备、可实现隐式特征选择、训练速度非常快、其他模型很难超越、很难建立一个糟糕的随机森林模型、大量优秀、免费以及开源的实现。
缺点:劣势在于模型大小、是个很难去解释的黑盒子。
适用数据范围:数值型和标称型

项目案例: 声纳信号分类

项目概述

这是 Gorman 和 Sejnowski 在研究使用神经网络的声纳信号分类中使用的数据集。任务是训练一个模型来区分声纳信号。

开发流程

收集数据:提供的文本文件
准备数据:转换样本集
分析数据:手工检查数据
训练算法:在数据上,利用 random_forest() 函数进行优化评估,返回模型的综合分类结果
测试算法:在采用自定义 n_folds 份随机重抽样 进行测试评估,得出综合的预测评分
使用算法:若你感兴趣可以构建完整的应用程序,从案例进行封装,也可以参考我们的代码

收集数据:提供的文本文件

样本数据:sonar-all-data.txt

0.02,0.0371,0.0428,0.0207,0.0954,0.0986,0.1539,0.1601,0.3109,0.2111,0.1609,0.1582,0.2238,0.0645,0.066,0.2273,0.31,0.2999,0.5078,0.4797,0.5783,0.5071,0.4328,0.555,0.6711,0.6415,0.7104,0.808,0.6791,0.3857,0.1307,0.2604,0.5121,0.7547,0.8537,0.8507,0.6692,0.6097,0.4943,0.2744,0.051,0.2834,0.2825,0.4256,0.2641,0.1386,0.1051,0.1343,0.0383,0.0324,0.0232,0.0027,0.0065,0.0159,0.0072,0.0167,0.018,0.0084,0.009,0.0032,R
0.0453,0.0523,0.0843,0.0689,0.1183,0.2583,0.2156,0.3481,0.3337,0.2872,0.4918,0.6552,0.6919,0.7797,0.7464,0.9444,1,0.8874,0.8024,0.7818,0.5212,0.4052,0.3957,0.3914,0.325,0.32,0.3271,0.2767,0.4423,0.2028,0.3788,0.2947,0.1984,0.2341,0.1306,0.4182,0.3835,0.1057,0.184,0.197,0.1674,0.0583,0.1401,0.1628,0.0621,0.0203,0.053,0.0742,0.0409,0.0061,0.0125,0.0084,0.0089,0.0048,0.0094,0.0191,0.014,0.0049,0.0052,0.0044,R
0.0262,0.0582,0.1099,0.1083,0.0974,0.228,0.2431,0.3771,0.5598,0.6194,0.6333,0.706,0.5544,0.532,0.6479,0.6931,0.6759,0.7551,0.8929,0.8619,0.7974,0.6737,0.4293,0.3648,0.5331,0.2413,0.507,0.8533,0.6036,0.8514,0.8512,0.5045,0.1862,0.2709,0.4232,0.3043,0.6116,0.6756,0.5375,0.4719,0.4647,0.2587,0.2129,0.2222,0.2111,0.0176,0.1348,0.0744,0.013,0.0106,0.0033,0.0232,0.0166,0.0095,0.018,0.0244,0.0316,0.0164,0.0095,0.0078,R

准备数据:转换样本集

# 导入csv文件
def loadDataSet(filename):
    dataset = []
    with open(filename, ‘r‘) as fr:
        for line in fr.readlines():
            if not line:
                continue
            lineArr = []
            for featrue in line.split(‘,‘):
                # strip()返回移除字符串头尾指定的字符生成的新字符串
                str_f = featrue.strip()
                if str_f.isdigit(): # 判断是否是数字
                    # 将数据集的第column列转换成float形式
                    lineArr.append(float(str_f))
                else:
                    # 添加分类标签
                    lineArr.append(str_f)
            dataset.append(lineArr)
    return dataset

分析数据:手工检查数据

训练算法:在数据上,利用 random_forest() 函数进行优化评估,返回模型的综合分类结果

  • 样本数据随机无放回抽样-用于交叉验证
def cross_validation_split(dataset, n_folds):
    """cross_validation_split(将数据集进行抽重抽样 n_folds 份,数据可以重复重复抽取)

    Args:
        dataset     原始数据集
        n_folds     数据集dataset分成n_flods份
    Returns:
        dataset_split    list集合,存放的是:将数据集进行抽重抽样 n_folds 份,数据可以重复重复抽取
    """
    dataset_split = list()
    dataset_copy = list(dataset)       # 复制一份 dataset,防止 dataset 的内容改变
    fold_size = len(dataset) / n_folds
    for i in range(n_folds):
        fold = list()                  # 每次循环 fold 清零,防止重复导入 dataset_split
        while len(fold) < fold_size:   # 这里不能用 if,if 只是在第一次判断时起作用,while 执行循环,直到条件不成立
            # 有放回的随机采样,有一些样本被重复采样,从而在训练集中多次出现,有的则从未在训练集中出现,此则自助采样法。从而保证每棵决策树训练集的差异性
            index = randrange(len(dataset_copy))
            # 将对应索引 index 的内容从 dataset_copy 中导出,并将该内容从 dataset_copy 中删除。
            # pop() 函数用于移除列表中的一个元素(默认最后一个元素),并且返回该元素的值。
            fold.append(dataset_copy.pop(index))  # 无放回的方式
            # fold.append(dataset_copy[index])  # 有放回的方式
        dataset_split.append(fold)
    # 由dataset分割出的n_folds个数据构成的列表,为了用于交叉验证
    return dataset_split
  • 训练数据集随机化
# Create a random subsample from the dataset with replacement
def subsample(dataset, ratio):   # 创建数据集的随机子样本
    """random_forest(评估算法性能,返回模型得分)

    Args:
        dataset         训练数据集
        ratio           训练数据集的样本比例
    Returns:
        sample          随机抽样的训练样本
    """

    sample = list()
    # 训练样本的按比例抽样。
    # round() 方法返回浮点数x的四舍五入值。
    n_sample = round(len(dataset) * ratio)
    while len(sample) < n_sample:
        # 有放回的随机采样,有一些样本被重复采样,从而在训练集中多次出现,有的则从未在训练集中出现,此则自助采样法。从而保证每棵决策树训练集的差异性
        index = randrange(len(dataset))
        sample.append(dataset[index])
    return sample
  • 特征随机化
# 找出分割数据集的最优特征,得到最优的特征 index,特征值 row[index],以及分割完的数据 groups(left, right)
def get_split(dataset, n_features):
    class_values = list(set(row[-1] for row in dataset))  # class_values =[0, 1]
    b_index, b_value, b_score, b_groups = 999, 999, 999, None
    features = list()
    while len(features) < n_features:
        index = randrange(len(dataset[0])-1)  # 往 features 添加 n_features 个特征( n_feature 等于特征数的根号),特征索引从 dataset 中随机取
        if index not in features:
            features.append(index)
    for index in features:                    # 在 n_features 个特征中选出最优的特征索引,并没有遍历所有特征,从而保证了每课决策树的差异性
        for row in dataset:
            groups = test_split(index, row[index], dataset)  # groups=(left, right), row[index] 遍历每一行 index 索引下的特征值作为分类值 value, 找出最优的分类特征和特征值
            gini = gini_index(groups, class_values)
            # 左右两边的数量越一样,说明数据区分度不高,gini系数越大
            if gini < b_score:
                b_index, b_value, b_score, b_groups = index, row[index], gini, groups  # 最后得到最优的分类特征 b_index,分类特征值 b_value,分类结果 b_groups。b_value 为分错的代价成本
    # print b_score
    return {‘index‘: b_index, ‘value‘: b_value, ‘groups‘: b_groups}
  • 随机森林
# Random Forest Algorithm
def random_forest(train, test, max_depth, min_size, sample_size, n_trees, n_features):
    """random_forest(评估算法性能,返回模型得分)

    Args:
        train           训练数据集
        test            测试数据集
        max_depth       决策树深度不能太深,不然容易导致过拟合
        min_size        叶子节点的大小
        sample_size     训练数据集的样本比例
        n_trees         决策树的个数
        n_features      选取的特征的个数
    Returns:
        predictions     每一行的预测结果,bagging 预测最后的分类结果
    """

    trees = list()
    # n_trees 表示决策树的数量
    for i in range(n_trees):
        # 随机抽样的训练样本, 随机采样保证了每棵决策树训练集的差异性
        sample = subsample(train, sample_size)
        # 创建一个决策树
        tree = build_tree(sample, max_depth, min_size, n_features)
        trees.append(tree)

    # 每一行的预测结果,bagging 预测最后的分类结果
    predictions = [bagging_predict(trees, row) for row in test]
    return predictions

测试算法:在采用自定义 n_folds 份随机重抽样 进行测试评估,得出综合的预测评分。

  • 计算随机森林的预测结果的正确率
# 评估算法性能,返回模型得分
def evaluate_algorithm(dataset, algorithm, n_folds, *args):
    """evaluate_algorithm(评估算法性能,返回模型得分)

    Args:
        dataset     原始数据集
        algorithm   使用的算法
        n_folds     数据的份数
        *args       其他的参数
    Returns:
        scores      模型得分
    """

    # 将数据集进行随机抽样,分成 n_folds 份,数据无重复的抽取
    folds = cross_validation_split(dataset, n_folds)
    scores = list()
    # 每次循环从 folds 从取出一个 fold 作为测试集,其余作为训练集,遍历整个 folds ,实现交叉验证
    for fold in folds:
        train_set = list(folds)
        train_set.remove(fold)
        # 将多个 fold 列表组合成一个 train_set 列表, 类似 union all
        """
        In [20]: l1=[[1, 2, ‘a‘], [11, 22, ‘b‘]]
        In [21]: l2=[[3, 4, ‘c‘], [33, 44, ‘d‘]]
        In [22]: l=[]
        In [23]: l.append(l1)
        In [24]: l.append(l2)
        In [25]: l
        Out[25]: [[[1, 2, ‘a‘], [11, 22, ‘b‘]], [[3, 4, ‘c‘], [33, 44, ‘d‘]]]
        In [26]: sum(l, [])
        Out[26]: [[1, 2, ‘a‘], [11, 22, ‘b‘], [3, 4, ‘c‘], [33, 44, ‘d‘]]
        """
        train_set = sum(train_set, [])
        test_set = list()
        # fold 表示从原始数据集 dataset 提取出来的测试集
        for row in fold:
            row_copy = list(row)
            row_copy[-1] = None
            test_set.append(row_copy)
        predicted = algorithm(train_set, test_set, *args)
        actual = [row[-1] for row in fold]

        # 计算随机森林的预测结果的正确率
        accuracy = accuracy_metric(actual, predicted)
        scores.append(accuracy)
    return scores

使用算法:若你感兴趣可以构建完整的应用程序,从案例进行封装,也可以参考我们的代码

完整代码地址https://github.com/apachecn/MachineLearning/blob/master/src/python/7.RandomForest/randomForest.py

AdaBoost

AdaBoost (adaptive boosting: 自适应 boosting) 概述

能否使用弱分类器和多个实例来构建一个强分类器? 这是一个非常有趣的理论问题。

AdaBoost 原理

AdaBoost 工作原理

AdaBoost 开发流程

收集数据:可以使用任意方法
准备数据:依赖于所使用的弱分类器类型,本章使用的是单层决策树,这种分类器可以处理任何数据类型。
    当然也可以使用任意分类器作为弱分类器,第2章到第6章中的任一分类器都可以充当弱分类器。
    作为弱分类器,简单分类器的效果更好。
分析数据:可以使用任意方法。
训练算法:AdaBoost 的大部分时间都用在训练上,分类器将多次在同一数据集上训练弱分类器。
测试算法:计算分类的错误率。
使用算法:通SVM一样,AdaBoost 预测两个类别中的一个。如果想把它应用到多个类别的场景,那么就要像多类 SVM 中的做法一样对 AdaBoost 进行修改。

AdaBoost 算法特点

* 优点:泛化(由具体的、个别的扩大为一般的)错误率低,易编码,可以应用在大部分分类器上,无参数调节。
* 缺点:对离群点敏感。
* 适用数据类型:数值型和标称型数据。

项目案例: 马疝病的预测

项目流程图

基于单层决策树构建弱分类器

  • 单层决策树(decision stump, 也称决策树桩)是一种简单的决策树。

项目概述

预测患有疝气病的马的存活问题,这里的数据包括368个样本和28个特征,疝气病是描述马胃肠痛的术语,然而,这种病并不一定源自马的胃肠问题,其他问题也可能引发疝气病,该数据集中包含了医院检测马疝气病的一些指标,有的指标比较主观,有的指标难以测量,例如马的疼痛级别。另外,除了部分指标主观和难以测量之外,该数据还存在一个问题,数据集中有30%的值是缺失的。

开发流程

收集数据:提供的文本文件
准备数据:确保类别标签是+1和-1,而非1和0
分析数据:统计分析
训练算法:在数据上,利用 adaBoostTrainDS() 函数训练出一系列的分类器
测试算法:我们拥有两个数据集。在不采用随机抽样的方法下,我们就会对 AdaBoost 和 Logistic 回归的结果进行完全对等的比较
使用算法:观察该例子上的错误率。不过,也可以构建一个 Web 网站,让驯马师输入马的症状然后预测马是否会死去

收集数据:提供的文本文件

训练数据:horseColicTraining.txt
测试数据:horseColicTest.txt

2.000000	1.000000	38.500000	66.000000	28.000000	3.000000	3.000000	0.000000	2.000000	5.000000	4.000000	4.000000	0.000000	0.000000	0.000000	3.000000	5.000000	45.000000	8.400000	0.000000	0.000000	-1.000000
1.000000	1.000000	39.200000	88.000000	20.000000	0.000000	0.000000	4.000000	1.000000	3.000000	4.000000	2.000000	0.000000	0.000000	0.000000	4.000000	2.000000	50.000000	85.000000	2.000000	2.000000	-1.000000
2.000000	1.000000	38.300000	40.000000	24.000000	1.000000	1.000000	3.000000	1.000000	3.000000	3.000000	1.000000	0.000000	0.000000	0.000000	1.000000	1.000000	33.000000	6.700000	0.000000	0.000000	1.000000

准备数据:确保类别标签是+1和-1,而非1和0

def loadDataSet(fileName):
    # 获取 feature 的数量, 便于获取
    numFeat = len(open(fileName).readline().split(‘\t‘))
    dataArr = []
    labelArr = []
    fr = open(fileName)
    for line in fr.readlines():
        lineArr = []
        curLine = line.strip().split(‘\t‘)
        for i in range(numFeat-1):
            lineArr.append(float(curLine[i]))
        dataArr.append(lineArr)
        labelArr.append(float(curLine[-1]))
    return dataArr, labelArr

分析数据:统计分析

过拟合(overfitting, 也称为过学习)

  • 发现测试错误率在达到一个最小值之后有开始上升,这种现象称为过拟合。

  • 通俗来说:就是把一些噪音数据也拟合进去的,如下图。

训练算法:在数据上,利用 adaBoostTrainDS() 函数训练出一系列的分类器

def adaBoostTrainDS(dataArr, labelArr, numIt=40):
    """adaBoostTrainDS(adaBoost训练过程放大)
    Args:
        dataArr   特征标签集合
        labelArr  分类标签集合
        numIt     实例数
    Returns:
        weakClassArr  弱分类器的集合
        aggClassEst   预测的分类结果值
    """
    weakClassArr = []
    m = shape(dataArr)[0]
    # 初始化 D,设置每个样本的权重值,平均分为m份
    D = mat(ones((m, 1))/m)
    aggClassEst = mat(zeros((m, 1)))
    for i in range(numIt):
        # 得到决策树的模型
        bestStump, error, classEst = buildStump(dataArr, labelArr, D)

        # alpha目的主要是计算每一个分类器实例的权重(组合就是分类结果)
        # 计算每个分类器的alpha权重值
        alpha = float(0.5*log((1.0-error)/max(error, 1e-16)))
        bestStump[‘alpha‘] = alpha
        # store Stump Params in Array
        weakClassArr.append(bestStump)

        print "alpha=%s, classEst=%s, bestStump=%s, error=%s " % (alpha, classEst.T, bestStump, error)
        # 分类正确:乘积为1,不会影响结果,-1主要是下面求e的-alpha次方
        # 分类错误:乘积为 -1,结果会受影响,所以也乘以 -1
        expon = multiply(-1*alpha*mat(labelArr).T, classEst)
        print ‘(-1取反)预测值expon=‘, expon.T
        # 计算e的expon次方,然后计算得到一个综合的概率的值
        # 结果发现: 判断错误的样本,D对于的样本权重值会变大。
        D = multiply(D, exp(expon))
        D = D/D.sum()

        # 预测的分类结果值,在上一轮结果的基础上,进行加和操作
        print ‘当前的分类结果:‘, alpha*classEst.T
        aggClassEst += alpha*classEst
        print "叠加后的分类结果aggClassEst: ", aggClassEst.T
        # sign 判断正为1, 0为0, 负为-1,通过最终加和的权重值,判断符号。
        # 结果为:错误的样本标签集合,因为是 !=,那么结果就是0 正, 1 负
        aggErrors = multiply(sign(aggClassEst) != mat(labelArr).T, ones((m, 1)))
        errorRate = aggErrors.sum()/m
        # print "total error=%s " % (errorRate)
        if errorRate == 0.0:
            break
    return weakClassArr, aggClassEst
发现:
alpha (模型权重)目的主要是计算每一个分类器实例的权重(加和就是分类结果)
  分类的权重值:最大的值= alpha 的加和,最小值=-最大值
D (样本权重)的目的是为了计算错误概率: weightedError = D.T*errArr,求最佳分类器
  样本的权重值:如果一个值误判的几率越小,那么 D 的样本权重越小

测试算法:我们拥有两个数据集。在不采用随机抽样的方法下,我们就会对 AdaBoost 和 Logistic 回归的结果进行完全对等的比较。

def adaClassify(datToClass, classifierArr):
    """adaClassify(ada分类测试)
    Args:
        datToClass     多个待分类的样例
        classifierArr  弱分类器的集合
    Returns:
        sign(aggClassEst) 分类结果
    """
    # do stuff similar to last aggClassEst in adaBoostTrainDS
    dataMat = mat(datToClass)
    m = shape(dataMat)[0]
    aggClassEst = mat(zeros((m, 1)))

    # 循环 多个分类器
    for i in range(len(classifierArr)):
        # 前提: 我们已经知道了最佳的分类器的实例
        # 通过分类器来核算每一次的分类结果,然后通过alpha*每一次的结果 得到最后的权重加和的值。
        classEst = stumpClassify(dataMat, classifierArr[i][‘dim‘], classifierArr[i][‘thresh‘], classifierArr[i][‘ineq‘])
        aggClassEst += classifierArr[i][‘alpha‘]*classEst
    return sign(aggClassEst)

使用算法:观察该例子上的错误率。不过,也可以构建一个 Web 网站,让驯马师输入马的症状然后预测马是否会死去。

# 马疝病数据集
# 训练集合
dataArr, labelArr = loadDataSet("input/7.AdaBoost/horseColicTraining2.txt")
weakClassArr, aggClassEst = adaBoostTrainDS(dataArr, labelArr, 40)
print weakClassArr, ‘\n-----\n‘, aggClassEst.T
# 计算ROC下面的AUC的面积大小
plotROC(aggClassEst.T, labelArr)
# 测试集合
dataArrTest, labelArrTest = loadDataSet("input/7.AdaBoost/horseColicTest2.txt")
m = shape(dataArrTest)[0]
predicting10 = adaClassify(dataArrTest, weakClassArr)
errArr = mat(ones((m, 1)))
# 测试:计算总样本数,错误样本数,错误率
print m, errArr[predicting10 != mat(labelArrTest).T].sum(), errArr[predicting10 != mat(labelArrTest).T].sum()/m

完整代码地址https://github.com/apachecn/MachineLearning/blob/master/src/python/7.AdaBoost/adaboost.py

要点补充

非均衡现象:

在分类器训练时,正例数目和反例数目不相等(相差很大)

  • 判断马是否能继续生存(不可误杀)
  • 过滤垃圾邮件(不可漏判)
  • 不能放过传染病的人
  • 不能随便认为别人犯罪

ROC 评估方法

  • ROC 曲线: 最佳的分类器应该尽可能地处于左上角

  • 对不同的 ROC 曲线进行比较的一个指标是曲线下的面积(Area Unser the Curve, AUC).
  • AUC 给出的是分类器的平均性能值,当然它并不能完全代替对整条曲线的观察。
  • 一个完美分类器的 AUC 为1,而随机猜测的 AUC 则为0.5。

代价函数

  • 基于代价函数的分类器决策控制:TP*(-5)+FN*1+FP*50+TN*0

抽样

  • 欠抽样(undersampling)或者过抽样(oversampling)

    • 欠抽样: 意味着删除样例
    • 过抽样: 意味着复制样例(重复使用)

时间: 2024-10-10 16:41:55

机器学习实战之 第七章 集成方法(随机森林和 AdaBoost)的相关文章

机器学习算法整理(四)集成算法—随机森林模型

随机:数据采样随机,特征选择随机 (数据采样,有放回) 原文地址:https://www.cnblogs.com/douzujun/p/8386930.html

吴裕雄 python 机器学习——集成学习随机森林RandomForestClassifier分类模型

import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklearn.model_selection import train_test_split def load_data_classification(): ''' 加载用于分类问题的数据集 ''' # 使用 scikit-learn 自带的 digits 数据集 digits=datasets.load_d

吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型

import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklearn.model_selection import train_test_split def load_data_regression(): ''' 加载用于回归问题的数据集 ''' #使用 scikit-learn 自带的一个糖尿病病人的数据集 diabetes = datasets.load_di

七月算法--12月机器学习在线班-第十一次课笔记—随机森林和提升

七月算法--12月机器学习在线班-第十一次课笔记-随机森林和提升 七月算法(julyedu.com)12月机器学习在线班学习笔记http://www.julyedu.com ? 随机森林:多棵树,对当前节点做划分是最重要的 1,决策树 决策树学习采用的是自顶向下的递归方法,其基本思想是以信息熵为度量构造一棵熵值下降最快的树 叶子节点处的熵值为零,此时每个叶节点中的实例都属于同一类. ? 下面的重点是选择什么样的熵值下降最快 1.2, 决策树的生成算法: 建立决策树的关键,即在当前状态下选择哪个属

机器学习中的算法(1)-决策树模型组合之随机森林与GBDT

版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系[email protected] 前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等.但是同时,单决策树又有一些不好的地方,比如说容易over-fitting,虽然有一些方法,如剪枝可以减少这种情况,但是还是不够的. 模型组合(比如

集成学习:随机森林.GBDT

集成学习(Ensemble Learning) 集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器.弱分类器(weak learner)指那些分类准确率只稍微好于随机猜测的分类器(errorrate < 0.5): 集成算法的成功在于保证弱分类器的多样性(Diversity).而且集成不稳定的算法也能够得到一个比较明显的性能提升 常见的集成学习思想有: Bagging Boosting Stacking Why need Ensemble Learning? 1. 弱分

paper 56 :机器学习中的算法:决策树模型组合之随机森林(Random Forest)

周五的组会如约而至,讨论了一个比较感兴趣的话题,就是使用SVM和随机森林来训练图像,这样的目的就是 在图像特征之间建立内在的联系,这个model的训练,着实需要好好的研究一下,下面是我们需要准备的入门资料: [关于决策树的基础知识参考:http://blog.csdn.net/holybin/article/details/22914417] 在机器学习中,随机森林由许多的决策树组成,因为这些决策树的形成采用了随机的方法,所以叫做随机森林.随机森林中的决策树之间是没有关联的,当测试数据进入随机森

集成模型——随机森林

本文的数据集和上一篇一样,是美国个人收入信息.在上一篇末尾提到了随机森林算法,这一篇就介绍随机森林. Ensemble Models 随机森林是一种集成模型(Ensemble Models),集成模型结合了多个模型然后创建了一个精度更高的模型 下面我们创建两个决策树,他们的参数不相同,然后计算他们的预测精度: from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import roc_auc_score colu

【机器学习实战】第15章 大数据与MapReduce

第15章 大数据与MapReduce 大数据 概述 大数据: 收集到的数据已经远远超出了我们的处理能力. 大数据 场景 假如你为一家网络购物商店工作,很多用户访问该网站,其中有些人会购买商品,有些人则随意浏览后就离开. 对于你来说,可能很想识别那些有购物意愿的用户. 那么问题就来了,数据集可能会非常大,在单机上训练要运行好几天. 接下来:我们讲讲 MapRedece 如何来解决这样的问题 MapRedece Hadoop 概述 Hadoop 是 MapRedece 框架的一个免费开源实现. Ma