Weka算法介绍

RWeka (http://cran.r-project.org/web/packages/RWeka/index.html) : 
1) 数据输入和输出 
WOW():查看Weka函数的参数。 
Weka_control():设置Weka函数的参数。 
read.arff():读Weka Attribute-Relation File Format (ARFF)格式的数据。 
write.arff:将数据写入Weka Attribute-Relation File Format (ARFF)格式的文件。 
2) 数据预处理 
Normalize():无监督的标准化连续性数据。 
Discretize():用MDL(Minimum Description Length)方法,有监督的离散化连续性数值数据。 
3) 分类和回归 
IBk():k最近邻分类 
LBR():naive Bayes法分类 
J48():C4.5决策树算法(决策树在分析各个属性时,是完全独立的)。 
LMT():组合树结构和Logistic回归模型,每个叶子节点是一个Logistic回归模型,准确性比单独的决策树和Logistic回归方法要好。 
M5P():M5 模型数算法,组合了树结构和线性回归模型,每个叶子节点是一个线性回归模型,因而可用于连续数据的回归。 
DecisionStump():单层决策树算法,常被作为boosting的基本学习器。 
SMO():支持向量机分类 
AdaBoostM1():Adaboost M1方法。-W参数指定弱学习器的算法。 
Bagging():通过从原始数据取样(用替换方法),创建多个模型。 
LogitBoost():弱学习器采用了对数回归方法,学习到的是实数值 
MultiBoostAB():AdaBoost 方法的改进,可看作AdaBoost 和 “wagging”的组合。 
Stacking():用于不同的基本分类器集成的算法。 
LinearRegression():建立合适的线性回归模型。 
Logistic():建立logistic回归模型。 
JRip():一种规则学习方法。 
M5Rules():用M5方法产生回归问题的决策规则。 
OneR():简单的1-R分类法。 
PART():产生PART决策规则。 
4) 聚类 
Cobweb():这是种基于模型方法,它假设每个聚类的模型并发现适合相应模型的数据。不适合对大数据库进行聚类处理。 
FarthestFirst():快速的近似的k均值聚类算法 
SimpleKMeans():k均值聚类算法 
XMeans():改进的k均值法,能自动决定类别数 
DBScan():基于密度的聚类方法,它根据对象周围的密度不断增长聚类。它能从含有噪声的空间数据库中发现任意形状的聚类。此方法将一个聚类定义为一组“密度连接”的点集。 
5)关联规则 
Apriori():Apriori是关联规则领域里最具影响力的基础算法,是一种广度优先算法,通过多次扫描数据库来获取支持度大于最小支持度的频繁项集。它的理论基础是频繁项集的两个单调性原则:频繁项集的任一子集一定是频繁的;非频繁项集的任一超集一定是非频繁的。在海量数据的情况下,Apriori 算法的时间和空间成本非常高。 
Tertius():Tertius算法。 
6)预测和评估: 
predict():根据分类或聚类结果预测新数据的类别 
table():比较两个因子对象 
evaluate_Weka_classifier():评估模型的执行,如:TP Rate,FP Rate,Precision,Recall,F-Measure。

---- 整理自http://maya.cs.depaul.edu/~classes/ect584/WEKA/classify.html

时间: 2024-10-25 13:12:10

Weka算法介绍的相关文章

【数据结构&&算法系列】KMP算法介绍及实现(c++ && java)

KMP算法如果理解原理的话,其实很简单. KMP算法简介 这里根据自己的理解简单介绍下. KMP算法的名称由三位发明者(Knuth.Morris.Pratt)的首字母组成,又称字符串查找算法. 个人觉得可以理解为最小回溯算法,即匹配失效的时候,尽量少回溯,从而缩短时间复杂度. KMP算法有两个关键的地方,1)求解next数组,2)利用next数组进行最小回溯. 1)求解next数组 next数组的取值只与模式串有关,next数组用于失配时回溯使用. 在简单版本的KMP算法中,每个位置 j 的 n

【算法】表达式求值--逆波兰算法介绍

逆波兰算法介绍 假定给定一个只 包含 加.减.乘.除,和括号的算术表达式,你怎么编写程序计算出其结果. 问题是:在表达式中,括号,以及括号的多层嵌套 的使用,运算符的优先级不同等因素,使得一个算术表达式在计算时,运算顺序往往因表达式的内容而定,不具规律性. 这样很难编写出统一的计算指令.使用逆波兰算法可以轻松解决.他的核心思想是将普通的中缀表达式转换为后缀表达式. 转换为后缀表达式的好处是:1.去除原来表达式中的括号,因为括号只指示运算顺序,不是完成计算必须的元素.2.使得运算顺序有规律可寻,计

BWT 压缩解压缩算法介绍 poj 1147

poj上1147题, 题意:任意一个长度为N的字符串,循环左移一个字符长度,这样形成N个新字符串,将这N个字符串按字典顺序排序,从上到下取得排序后的每行最后一列的的所有字符,求排序后的第一行字符串? 举个简单例子: 原串为: 0 0 0 1 1 那么循环左移排序后的矩阵为: 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 1 1 0 0 0 那么我们得到最后列的字符串为: 1 0 0 1 0 现在我们只知道最后列的字符串 1 0 0 1 0,让我们求循环左移排序后

联合人脸检测、校准算法介绍

联合人脸检测.校准算法介绍 人脸检测(detection)在opencv中早就有直接能拿来用的haar分类器,基于Viola-Jones算法.但是毕竟是老掉牙的技术,Precision/Recall曲线渣到不行,在实际工程中根本没法给boss看,作为MSRA脑残粉,这里介绍一种MSRA在14年的最新技术:下载   [ECCV 2014] Joint Cascade Face Detection and Alignment.这篇文章直接在30ms的时间里把detection和alignment都给

KNN算法介绍

KNN算法全名为k-Nearest Neighbor,就是K最近邻的意思. 算法描述 KNN是一种分类算法,其基本思想是采用测量不同特征值之间的距离方法进行分类. 算法过程如下: 1.准备样本数据集(样本中每个数据都已经分好类,并具有分类标签):2.使用样本数据进行训练:3.输入测试数据A:4.计算A与样本集的每一个数据之间的距离:5.按照距离递增次序排序:6.选取与A距离最小的k个点:7.计算前k个点所在类别的出现频率:8.返回前k个点出现频率最高的类别作为A的预测分类. 主要因素 训练集(或

Haproxy 负载均衡算法介绍:

一.Haproxy配置介绍: 配置文件:/usr/local/haproxy/etc/haproxy.cfg balance roundrobin    # 负载均衡算法配置 二.Haproxy负载均衡算法介绍: balance roundrobin    # 轮询,软负载均衡基本都具备这种算法 balance static-rr    # 根据权重,建议使用 balance leastconn      # 最少连接者先处理,建议使用 balance source         # 根据请求

机器学习算法介绍

什么是程序 计算机程序,是指为了得到某种结果而可以由计算机(等具有信息处理能力的装置)执行的代码化指令序列(或者可以被自动转换成代码化指令序列的符号化指令序列或者符号化语句序列). 通俗讲,计算机给人干活,但它不是人,甚至不如狗更懂人的需要,那怎么让它干活呢,那就需要程序员来写程序,程序就是计算机能懂的语言(指令),然后计算机可以执行这些程序(指令),最终完成任务. int n = std::atoi(argv[1]); //求n的阶乘 double result = 1.0; for (int

BFS/DFS算法介绍与实现(转)

广度优先搜索(Breadth-First-Search)和深度优先搜索(Deep-First-Search)是搜索策略中最经常用到的两种方法,特别常用于图的搜索.其中有很多的算法都用到了这两种思想,比如:Dijkstra单源最短路径算法和Prim最小生成树算法都采用了和宽度优先搜索类似的思想.BFS的思想:从一个图的某一个顶点V0出发,首先访问和V0相邻的且未被访问过的顶点V1.V2.--Vn,然后依次访问与V1.V2--Vn相邻且未被访问的顶点.如此继续,找到所要找的顶点或者遍历完整个图.由此

Levenshtein字符串距离算法介绍

Levenshtein字符串距离算法介绍 文/开发部 Dimmacro KMP完全匹配算法和 Levenshtein相似度匹配算法是模糊查找匹配字符串中最经典的算法,配合近期技术栏目关于算法的探讨,上期介绍了KMP算法的一些皮毛,收到了同事的一些反馈,本期再接再厉,搜集了一些资料,简单谈谈Levenshtein相似度匹配算法,希望能抛砖引玉. 算法简介: Levenshtein distance最先是由俄国科学家Vladimir Levenshtein在1965年发明,其原理是两个字符串之间,由