POJ 2253 - Frogger (floyd)

A - Frogger

Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

Submit Status

Description

Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sitting on another stone. He plans to visit her, but since the water is dirty and full of tourists‘ sunscreen, he wants to avoid swimming and instead reach her by jumping. 
Unfortunately Fiona‘s stone is out of his jump range. Therefore Freddy considers to use other stones as intermediate stops and reach her by a sequence of several small jumps. 
To execute a given sequence of jumps, a frog‘s jump range obviously must be at least as long as the longest jump occuring in the sequence. 
The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones.

You are given the coordinates of Freddy‘s stone, Fiona‘s stone and all other stones in the lake. Your job is to compute the frog distance between Freddy‘s and Fiona‘s stone.

Input

The input will contain one or more test cases. The first line of each test case will contain the number of stones n (2<=n<=200). The next n lines each contain two integers xi,yi (0 <= xi,yi <= 1000) representing the coordinates of stone #i. Stone #1 is Freddy‘s stone, stone #2 is Fiona‘s stone, the other n-2 stones are unoccupied. There‘s a blank line following each test case. Input is terminated by a value of zero (0) for n.

Output

For each test case, print a line saying "Scenario #x" and a line saying "Frog Distance = y" where x is replaced by the test case number (they are numbered from 1) and y is replaced by the appropriate real number, printed to three decimals. Put a blank line after each test case, even after the last one.

Sample Input

2
0 0
3 4

3
17 4
19 4
18 5

0

Sample Output

Scenario #1
Frog Distance = 5.000

Scenario #2
Frog Distance = 1.414

 裸的floyd...注意格式1A

 1 /*************************************************************************
 2     > File Name: poj/2253.cpp
 3     > Author: 111qqz
 4     > Email: [email protected]
 5     > Created Time: 2015年10月22日 星期四 22时52分18秒
 6  ************************************************************************/
 7
 8 #include<iostream>
 9 #include<iomanip>
10 #include<cstdio>
11 #include<algorithm>
12 #include<cmath>
13 #include<cstring>
14 #include<string>
15 #include<map>
16 #include<set>
17 #include<queue>
18 #include<vector>
19 #include<stack>
20 #include<cctype>
21
22 #define yn hez111qqz
23 #define j1 cute111qqz
24 #define ms(a,x) memset(a,x,sizeof(a))
25 using namespace std;
26 const int dx4[4]={1,0,0,-1};
27 const int dy4[4]={0,-1,1,0};
28 typedef long long LL;
29 typedef double DB;
30 const int inf = 0x3f3f3f3f;
31 const int N=2E2+7;
32 double d[N][N];
33 double x[N],y[N];
34 int n;
35
36
37 double dis( int a,int b)
38 {
39     double res;
40     res = (x[a]-x[b])*(x[a]-x[b])+(y[a]-y[b])*(y[a]-y[b]);
41     return sqrt(res);
42 }
43 int main()
44 {
45   #ifndef  ONLINE_JUDGE
46    freopen("in.txt","r",stdin);
47   #endif
48    int cas = 0 ;
49    while (scanf("%d",&n)!=EOF&&n)
50    {
51        cas++;
52        printf("Scenario #%d\n",cas);
53        for ( int i = 0 ; i < n ; i++)
54        for ( int j = 0 ;  j < n ; j++)
55            d[i][j] = 999999;
56        for ( int i = 0 ; i < n ; i++) scanf("%lf %lf",&x[i],&y[i]);
57
58        for ( int i = 0 ; i < n ; i++)
59     for ( int j = 0 ; j < n ; j++)
60     {
61         if (i==j)
62         {
63         d[i][j]=0;
64         }
65         else
66         {
67         d[i][j] =dis(i,j);
68         }
69     }
70
71        for ( int k = 0 ; k < n ; k++)
72        for ( int i = 0  ;  i < n ; i++)
73            for ( int j = 0 ; j < n; j++ )
74            d[i][j] = min(d[i][j],max(d[i][k],d[k][j]));
75
76       // printf("%f\n",d[0][1]);
77        printf("Frog Distance = %.3f\n",d[0][1]);
78        puts("");
79    }
80
81
82  #ifndef ONLINE_JUDGE
83   fclose(stdin);
84   #endif
85     return 0;
86 }

时间: 2024-10-08 08:15:57

POJ 2253 - Frogger (floyd)的相关文章

POJ 2253 Frogger

题意:一只青蛙找到另外一只青蛙,不过可以通过其它的石头跳到目标青蛙的位置去,其中,输入数据的时候第一组数据是第一只青蛙的位置,第二组是目标青蛙的位置,其它的为石头的位置 思路:dijkstra算法的一种小小的变形,做法还是一样的 Tips:POJ上的双精度浮点型输出竟然是%f输出害的我一直错,或者是编译错误,恼啊! AC代码: #include<cstdio> #include<cmath> #include<algorithm> using namespace std

[2016-04-02][POJ][2253][Frogger]

时间:2016-04-02 17:55:33 星期六 题目编号:[2016-04-02][POJ][2253][Frogger] 题目大意:给定n个点的坐标,问从起点到终点的所有路径中,最大边的最小值是多少,即每一步至少是多少才能走到终点 分析: 方法1: 枚举出完全图,然后从起点跑一次Dijkstra算法,不过选点不再是选择起点到终点路径的点,而是起点到终点的路径中,边最大边最小的点,即d数组保存起点到当前点的路径中最大边的最小值, 最大边的最小值:u->v d[v] = min(d[i],m

Floyd-Warshall算法(求解任意两点间的最短路) 详解 + 变形 之 poj 2253 Frogger

/* 好久没有做有关图论的题了,复习一下. --------------------------------------------------------- 任意两点间的最短路(Floyd-Warshall算法) 动态规划: dp[k][i][j] := 节点i可以通过编号1,2...k的节点到达j节点的最短路径. 使用1,2...k的节点,可以分为以下两种情况来讨论: (1)i到j的最短路正好经过节点k一次 dp[k-1][i][k] + dp[k-1][k][j] (2)i到j的最短路完全

poj 2253 Frogger 解题报告

题目链接:http://poj.org/problem?id=2253 题目意思:找出从Freddy's stone  到  Fiona's stone  最短路中的最长路. 很拗口是吧,举个例子.对于 i 到 j 的一条路径,如果有一个点k, i 到 k 的距离 && k 到 j 的距离都小于 i 到 j 的距离,那么就用这两条中较大的一条来更新 i 到 j 的距离 .每两点之间都这样求出路径.最后输出 1 到 2 的距离(1:Freddy's stone   2:Fiona's sto

poj 2253 Frogger (最长路中的最短路)

链接:poj 2253 题意:给出青蛙A,B和若干石头的坐标,现青蛙A想到青蛙B那,A可通过任意石头到达B, 问从A到B多条路径中的最长边中的最短距离 分析:这题是最短路的变形,以前求的是路径总长的最小值,而此题是通路中最长边的最小值,每条边的权值可以通过坐标算出,因为是单源起点,直接用SPFA算法或dijkstra算法就可以了 SPFA 16MS #include<cstdio> #include<queue> #include<cmath> #include<

poj 2253 Frogger (dijkstra最短路)

题目链接:http://poj.org/problem?id=2253 Frogger Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 25773   Accepted: 8374 Description Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sitting on an

poj 2253 Frogger [dijkstra]

传送门:http://poj.org/problem?id=2253 Frogger Description Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sitting on another stone. He plans to visit her, but since the water is dirty and full of tourists

POJ - 2253 Frogger(Floyd最短路+预处理)

题目链接:http://poj.org/problem?id=2253 题意:青蛙要从点1到点2,给出各点的坐标,如果点A到点B可以通过A->C,C->B,A到B的距离可以用A->C和C-B中较长的一边代替(如果A直接到B更短的话就不用了),求点1到点2的最短距离. 题解:本来想用dijkst,但是想想就200的数据量,直接Floyd岂不美滋滋.先预处理一下各点之间的距离.因为取两条边中较长的那条边,所以转移的话,那转移的两条边都要比原来的短才可以. 值得注意的是用C的格式输入的时候要用

poj 2253 Frogger(floyd变形)

题目链接:http://poj.org/problem?id=1797 题意:给出两只青蛙的坐标A.B,和其他的n-2个坐标,任一两个坐标点间都是双向连通的.显然从A到B存在至少一条的通路,每一条通路的元素都是这条通路中前后两个点的距离,这些距离中又有一个最大距离.现在要求求出所有通路的最大距离,并把这些最大距离作比较,把最小的一个最大距离作为青蛙的最小跳远距离. 有一个明显的方法就是dfs一遍但是肯定会te,所以可以考虑一下用dp的思想. 类似记忆化搜索的思想,由于数据比较小所以不用记忆化搜索