POJ-1659 Frogs' Neighborhood---Havel-Hakimi定理

题目链接:

https://vjudge.net/problem/POJ-1659

题目大意:

给定度数列,判断是否可以建图

思路:

Havel-Hakimi定理

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<algorithm>
 5 #include<cmath>
 6 #include<queue>
 7 #include<stack>
 8 #include<map>
 9 #include<set>
10 #include<sstream>
11 #include<functional>
12 using namespace std;
13 typedef long long ll;
14 const int maxn = 1e2 + 10;
15 const int INF = 1e9 + 7;
16 int T, n, m, cases;
17 int Map[maxn][maxn];
18 struct node
19 {
20     int x, id;
21     bool operator<(const node & a)const
22     {
23         return x > a.x;
24     }
25 }a[maxn];
26
27 int main()
28 {
29     cin >> T;
30     while(T--)
31     {
32         cin >> n;
33         for(int i = 0; i < n; i++)
34         {
35             cin >> a[i].x;
36             a[i].id = i;
37         }
38         memset(Map, 0, sizeof(Map));
39         bool flag = 1;
40         for(int i = 0; i < n; i++)
41         {
42             sort(a + i, a + n);
43             if(a[i].x >= n - i)
44             {
45                 flag = 0;
46                 break;
47             }
48             for(int j = 1 + i; j <= a[i].x + i; j++)
49             {
50                 a[j].x--;
51                 if(a[j].x < 0)flag = 0;
52                 Map[a[i].id][a[j].id] = Map[a[j].id][a[i].id] = 1;
53             }
54         }
55         if(flag)
56         {
57             puts("YES");
58             for(int i = 0; i < n; i++)
59             {
60                 printf("%d", Map[i][0]);
61                 for(int j = 1; j < n; j++)
62                 {
63                     printf(" %d", Map[i][j]);
64                 }
65                 puts("");
66             }
67         }
68         else puts("NO");
69         if(T)cout<<endl;
70     }
71     return 0;
72 }

POJ-1659 Frogs' Neighborhood---Havel-Hakimi定理

原文地址:https://www.cnblogs.com/fzl194/p/8745681.html

时间: 2024-11-17 20:16:43

POJ-1659 Frogs' Neighborhood---Havel-Hakimi定理的相关文章

POJ 1659 Frogs&#39; Neighborhood 可图性判断-Havel定理

Description 未名湖附近共有N个大小湖泊L1, L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N).如果湖泊Li和Lj之间有水路相连,则青蛙Fi和Fj互称为邻居.现在已知每只青蛙的邻居数目x1, x2, ..., xn,请你给出每两个湖泊之间的相连关系. Input 第一行是测试数据的组数T(0 ≤ T ≤ 20).每组数据包括两行,第一行是整数N(2 < N < 10),第二行是N个整数,x1, x2,..., xn(0 ≤ xi ≤ N

POJ 1659 Frogs&#39; Neighborhood(可图性判定—Havel-Hakimi定理)【超详解】

Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 9897   Accepted: 4137   Special Judge Description 未名湖附近共有N个大小湖泊L1, L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N).如果湖泊Li和Lj之间有水路相连,则青蛙Fi和Fj互称为邻居.现在已知每只青蛙的邻居数目x1, x2, ..

poj 1659 Frogs&#39; Neighborhood Havel-Hakimi定理 可简单图定理

作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4098136.html 给定一个非负整数序列$D=\{d_1,d_2,...d_n\}$,若存在一个无向图使得图中各点的度与此序列一一对应,则称此序列可图化.进一步,若图为简单图,则称此序列可简单图化. 可图化的判定为:$d_1+d_2+ \cdots +d_n=0(mod2)$.即把奇数度的点配对,剩下的变为自环.可简单图化的判定,即Havel-Hakimi定理: 我们把序列$D$变换为非

poj 1659 Frogs&#39; Neighborhood (Havel-Hakimi定理,判断序列是否可图)

链接:poj 1659 中文题不必解释题意... 其实质是给定一个度序列,判断是否可图, 若可图,输出YES,并输出各顶点之间的连边的情况 否则,输出NO 思路:判断一个序列是否可图,直接利用Havel-Hakimi定理即可 判断任意一个序列是否可图的具体过程: (1)先将序列由大到小排序 (2)设最大的度数为 t ,将最大项删除,然后把最大度数后 (不包括自己)的 t 个度数分别减1(意思就是把度数最大的点与后几个点连边) (3)重复上述两步,如果最大度数t超过了剩下顶点的个数, 或者序列中出

POJ 1659 Frogs&#39; Neighborhood Havel-Hakimi定理判断可图

1,Havel-Hakimi定理主要用来判定一个给定的序列是否是可图的. 2,首先介绍一下度序列:若把图 G 所有顶点的度数排成一个序列 S,则称 S 为图 G 的度序列. 3,一个非负整数组成的有限序列如果是某个无向图的序列,则称该序列是可图的. 4,判定过程:(1)按降序排序,进入步骤(2).(2)将第[2,2+s[1]-1]全部减1,若出现负数则不可图,判定结束.若[2,2+s[1]-1]全部变为0,则可图,判定结束.将s[1]删除,跳至步骤(1). #include <algorithm

POJ 1659 Frogs&#39; Neighborhood(度序列构图)

题意  中文 根据Havel-Hakimi定理构图就行咯  先把顶点按度数从大到小排序  可图的话  度数大的顶点与它后面的度数个顶点相连肯定是满足的  出现了-1就说明不可图了 #include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int N = 20; int mat[N][N], ord[N]; bool cmp(int i, int j) { retur

poj 1659 Frogs&#39; Neighborhood

#include <stdio.h> #include <string.h> #include <iostream> #include <algorithm> #include <vector> #include <queue> #include <stack> #include <set> #include <map> #include <string> #include <ma

poj 1659 Frogs&#39; Neighborhood (构图)

Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 7237   Accepted: 3123   Special Judge Description 未名湖附近共有N个大小湖泊L1, L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N).如果湖泊Li和Lj之间有水路相连,则青蛙Fi和Fj互称为邻居.现在已知每只青蛙的邻居数目x1, x2, ..

POJ 1659 Frogs&#39; Neighborhood (贪心)

题意:中文题. 析:贪心策略,先让邻居多的选,选的时候也尽量选邻居多的. 代码如下: #pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring>

Poj 1659 Frogs&#39; Neighborhood 图的可图性判断

/* 先将所有度数按从大到小排序,取最大的度数为N的节点,将其后面N个节点的度数减一,如果出现负数节点或者后面的节点数量不足N则可以判定无法构成图,重复这个过程,直到所有的度数都为零*/#include <cstdio> #include <iostream> #include <cstdlib> #include <algorithm> #include <set> #include <map> #include <vecto