大数据实践总结分享

以上是上一季度自己对于大数据相关技术的学习总结,把之前的一些思维导图集中在一起,便于复习相关知识点。本着人人为我,我为人人的理念,分享给大家。同时,为了学习更有针对性,群友若对哪一个知识点感兴趣的,这是一个总目录,我可以把分知识点的导图分享给需要的人,我们共同讨论,一起进步。

另也将之前学到,看书,与人交流的一些大数据方面的导图分享出来。希望能够自我督促,更快成长!

原文地址:http://blog.51cto.com/bingyang/2073587

时间: 2024-10-09 01:09:57

大数据实践总结分享的相关文章

大数据实践:ODI 和 Twitter (二)

大数据实践:ODI和Twitter(二) 在前面的文章中,我们已经使用flume将数据从twitter抓取到Hive中,现在我们来看看ODI(Oracle Data Integrator)如何在HIVE表中进行逆向工程,打开HIVE模型,然后在逆向工程中选择“新的数据存储”及待逆向的对象,如下: 逆向工程完成之后,得到如下的元数据信息: 上面的操作步骤与普通的关系型数据库一样,没有特殊之处,ODI可以对HIVE的表进行逆向工程,使用RKM Hive, RKM HBase, IKM File to

有赞大数据实践: 敏捷型数据仓库的构建及其应用

有赞大数据实践: 敏捷型数据仓库的构建及其应用 有赞大数据实践: 敏捷型数据平台的构建及其应用 前言 数据仓库设计 总体架构 数据仓库实例 基础指标层 分层的好处 数仓工具 数据仓库与数据分析 即席查询系统 多维分析系统 搜索分析系统 固定报表系统 数据仓库在信息检索中的应用 小结 前言 互联网公司一般发展迅速. 一方面, 业务飞速发展, 当前应用的形式和模型每天都在变化; 企业的产品也在经历不断的下线上线过程. 数据仓库如何拥抱变化, 是难点之一. 互联网的运营人员从了解经营状况转化为精细化运

大众点评的大数据实践-CSDN.NET

大众点评的大数据实践-CSDN.NET 大众点评的大数据实践 爬虫工程师成大数据时代的"宠儿" - 杭州新闻中心 - 杭州网 爬虫工程师成大数据时代的"宠儿"

我的大数据实践之路-洗脑篇

1. 什么是大数据 五个简单故事告诉你什么是"大数据" 2.如何看待大数据 要全体不要抽样,要效率不要绝对精确,要相关不要因果 3.大数据能干什么 通过用户的使用习惯来预判用户的行为 4.大数据应用场景 我的大数据实践之路-洗脑篇

好程序员大数据学习路线分享hive的运行方式

好程序员大数据学习路线分享hive的运行方式,hive的属性设置: 1.在cli端设置 (只针对当前的session) 3.在java代码中设置 (当前连接) 2.在配置文件中设置 (所有session有效) 设置属性的优先级依次降低. cli端只能设置非hive启动需要的属性.(log属性,元数据连接属性) 查找所有属性: hive>set; 查看当前属性的值:通常是hadoop hive> set -v; 模糊查找属性: hive -S -e "set" | grep

好程序员大数据学习路线分享高阶函数

好程序员大数据学习路线分享高阶函数,我们通常将可以做为参数传递到方法中的表达式叫做函数 高阶函数包含:作为值的函数.匿名函数.闭包.柯里化等等. 定义函数时格式:val 变量名 =?(输入参数类型和个数)?=>?函数实现和返回值类型和个数 "="表示将函数赋给一个变量 "=>"左面表示输入参数名称.类型和个数,右边表示函数的实现和返回值类型和参数个数 作为值的函数 定义函数 scala> val func = (x:Int) => x * x

好程序员大数据学习路线分享MAPREDUCE

好程序员大数据学习路线分享MAPREDUCE,需求:统计大量的文本文件中的单词出现的次数 1)整个运算需要分阶段 阶段一:并行局部运算 阶段二 :汇总处理,不同的阶段需要开发不同的程序 2)阶段之间的调用 3)业务程序(task程序)如何并发到集群并启动程序 4)如何监控task程序的运行状态,如何处理异常 ::这些问题是开发分布式程序都会面临的问题,完全可以封装成框架::MR 的结构 一个完整的MapReduce运行时有三类实例进程: 1)MRAppMaster : 负责整个程序的过程调度和状

大数据学习路线分享MapReduce全过程解析

大数据学习路线分享MapReduce全过程解析,移动数据与移动计算 在学习大数据的时候接触了移动数据和移动计算这两种联系紧密而又有很大不同的概念,其中移动计算也叫做本地计算. 在以前的数据处理中时使用的移动数据,其实就是将需要处理的数据传输到存放不同处理数据方式逻辑的各个节点上.这样做的效率很低,特别是大数据中的数据量是很大的,至少都是GB以上,更大的是TB.PB甚至更大,而且磁盘I/O.网络I/O的效率是很低的,这样处理起来就需要很长的时间,远远不能满足我们的要求.而移动计算就出现了. 移动计

好程序员大数据学习路线分享Hadoop阶段的高可用配置

大数据学习路线分享Hadoop阶段的高可用配置,什么是Hadoop的HA机制 Ha机制即Hadoop的高可用(7*24小时不中断服务) 正式引入HA机制是从hadoop2.0开始,之前的版本中没有HA机制 hadoop-ha严格来说应该分成各个组件的HA机制--HDFS的HA.YARN的HA HDFS的HA机制详解HDFS 的HA主要是通过双namenode协调工作实现 双namenode协调工作的要点:A.元数据管理方式需要改变: 内存中各自保存一份元数据 Edits日志只能有一份,只有Act