Redis性能调优

Redis性能调优

尽管Redis是一个非常快速的内存数据存储媒介,也并不代表Redis不会产生性能问题。
前文中提到过,Redis采用单线程模型,所有的命令都是由一个线程串行执行的,所以当某个命令执行耗时较长时,会拖慢其后的所有命令,这使得Redis对每个任务的执行效率更加敏感。

针对Redis的性能优化,主要从下面几个层面入手:

  • 最初的也是最重要的,确保没有让Redis执行耗时长的命令
  • 使用pipelining将连续执行的命令组合执行
  • 操作系统的Transparent huge pages功能必须关闭:
    echo never > /sys/kernel/mm/transparent_hugepage/enabled
  • 如果在虚拟机中运行Redis,可能天然就有虚拟机环境带来的固有延迟。可以通过./redis-cli --intrinsic-latency 100命令查看固有延迟。同时如果对Redis的性能有较高要求的话,应尽可能在物理机上直接部署Redis。
  • 检查数据持久化策略
  • 考虑引入读写分离机制

长耗时命令

Redis绝大多数读写命令的时间复杂度都在O(1)到O(N)之间,在文本和官方文档中均对每个命令的时间复杂度有说明。

通常来说,O(1)的命令是安全的,O(N)命令在使用时需要注意,如果N的数量级不可预知,则应避免使用。例如对一个field数未知的Hash数据执行HGETALL/HKEYS/HVALS命令,通常来说这些命令执行的很快,但如果这个Hash中的field数量极多,耗时就会成倍增长。
又如使用SUNION对两个Set执行Union操作,或使用SORT对List/Set执行排序操作等时,都应该严加注意。

避免在使用这些O(N)命令时发生问题主要有几个办法:

  • 不要把List当做列表使用,仅当做队列来使用
  • 通过机制严格控制Hash、Set、Sorted Set的大小
  • 可能的话,将排序、并集、交集等操作放在客户端执行
  • 绝对禁止使用KEYS命令
  • 避免一次性遍历集合类型的所有成员,而应使用SCAN类的命令进行分批的,游标式的遍历

Redis提供了SCAN命令,可以对Redis中存储的所有key进行游标式的遍历,避免使用KEYS命令带来的性能问题。同时还有SSCAN/HSCAN/ZSCAN等命令,分别用于对Set/Hash/Sorted Set中的元素进行游标式遍历。SCAN类命令的使用请参考官方文档:https://redis.io/commands/scan

Redis提供了Slow Log功能,可以自动记录耗时较长的命令。相关的配置参数有两个:

slowlog-log-slower-than xxxms  #执行时间慢于xxx毫秒的命令计入Slow Log
slowlog-max-len xxx  #Slow Log的长度,即最大纪录多少条Slow Log

使用SLOWLOG GET [number]命令,可以输出最近进入Slow Log的number条命令。
使用SLOWLOG RESET命令,可以重置Slow Log

网络引发的延迟

  • 尽可能使用长连接或连接池,避免频繁创建销毁连接
  • 客户端进行的批量数据操作,应使用Pipeline特性在一次交互中完成。具体请参照本文的Pipelining章节

数据持久化引发的延迟

Redis的数据持久化工作本身就会带来延迟,需要根据数据的安全级别和性能要求制定合理的持久化策略:

  • AOF + fsync always的设置虽然能够绝对确保数据安全,但每个操作都会触发一次fsync,会对Redis的性能有比较明显的影响
  • AOF + fsync every second是比较好的折中方案,每秒fsync一次
  • AOF + fsync never会提供AOF持久化方案下的最优性能
  • 使用RDB持久化通常会提供比使用AOF更高的性能,但需要注意RDB的策略配置
  • 每一次RDB快照和AOF Rewrite都需要Redis主进程进行fork操作。fork操作本身可能会产生较高的耗时,与CPU和Redis占用的内存大小有关。根据具体的情况合理配置RDB快照和AOF Rewrite时机,避免过于频繁的fork带来的延迟

Redis在fork子进程时需要将内存分页表拷贝至子进程,以占用了24GB内存的Redis实例为例,共需要拷贝24GB / 4kB * 8 = 48MB的数据。在使用单Xeon 2.27Ghz的物理机上,这一fork操作耗时216ms。

可以通过INFO命令返回的latest_fork_usec字段查看上一次fork操作的耗时(微秒)

Swap引发的延迟

当Linux将Redis所用的内存分页移至swap空间时,将会阻塞Redis进程,导致Redis出现不正常的延迟。Swap通常在物理内存不足或一些进程在进行大量I/O操作时发生,应尽可能避免上述两种情况的出现。

/proc/<pid>/smaps文件中会保存进程的swap记录,通过查看这个文件,能够判断Redis的延迟是否由Swap产生。如果这个文件中记录了较大的Swap size,则说明延迟很有可能是Swap造成的。

数据淘汰引发的延迟

当同一秒内有大量key过期时,也会引发Redis的延迟。在使用时应尽量将key的失效时间错开。

引入读写分离机制

Redis的主从复制能力可以实现一主多从的多节点架构,在这一架构下,主节点接收所有写请求,并将数据同步给多个从节点。
在这一基础上,我们可以让从节点提供对实时性要求不高的读请求服务,以减小主节点的压力。
尤其是针对一些使用了长耗时命令的统计类任务,完全可以指定在一个或多个从节点上执行,避免这些长耗时命令影响其他请求的响应。

关于读写分离的具体说明,请参见后续章节

主从复制与集群分片

主从复制

Redis支持一主多从的主从复制架构。一个Master实例负责处理所有的写请求,Master将写操作同步至所有Slave。
借助Redis的主从复制,可以实现读写分离和高可用:

  • 实时性要求不是特别高的读请求,可以在Slave上完成,提升效率。特别是一些周期性执行的统计任务,这些任务可能需要执行一些长耗时的Redis命令,可以专门规划出1个或几个Slave用于服务这些统计任务
  • 借助Redis Sentinel可以实现高可用,当Master crash后,Redis Sentinel能够自动将一个Slave晋升为Master,继续提供服务

启用主从复制非常简单,只需要配置多个Redis实例,在作为Slave的Redis实例中配置:

slaveof 192.168.1.1 6379  #指定Master的IP和端口

当Slave启动后,会从Master进行一次冷启动数据同步,由Master触发BGSAVE生成RDB文件推送给Slave进行导入,导入完成后Master再将增量数据通过Redis Protocol同步给Slave。之后主从之间的数据便一直以Redis Protocol进行同步

使用Sentinel做自动failover

Redis的主从复制功能本身只是做数据同步,并不提供监控和自动failover能力,要通过主从复制功能来实现Redis的高可用,还需要引入一个组件:Redis Sentinel

Redis Sentinel是Redis官方开发的监控组件,可以监控Redis实例的状态,通过Master节点自动发现Slave节点,并在监测到Master节点失效时选举出一个新的Master,并向所有Redis实例推送新的主从配置。

Redis Sentinel需要至少部署3个实例才能形成选举关系。

关键配置:

sentinel monitor mymaster 127.0.0.1 6379 2  #Master实例的IP、端口,以及选举需要的赞成票数
sentinel down-after-milliseconds mymaster 60000  #多长时间没有响应视为Master失效
sentinel failover-timeout mymaster 180000  #两次failover尝试间的间隔时长
sentinel parallel-syncs mymaster 1  #如果有多个Slave,可以通过此配置指定同时从新Master进行数据同步的Slave数,避免所有Slave同时进行数据同步导致查询服务也不可用

另外需要注意的是,Redis Sentinel实现的自动failover不是在同一个IP和端口上完成的,也就是说自动failover产生的新Master提供服务的IP和端口与之前的Master是不一样的,所以要实现HA,还要求客户端必须支持Sentinel,能够与Sentinel交互获得新Master的信息才行。

集群分片

为何要做集群分片:

  • Redis中存储的数据量大,一台主机的物理内存已经无法容纳
  • Redis的写请求并发量大,一个Redis实例以无法承载

当上述两个问题出现时,就必须要对Redis进行分片了。
Redis的分片方案有很多种,例如很多Redis的客户端都自行实现了分片功能,也有向Twemproxy这样的以代理方式实现的Redis分片方案。然而首选的方案还应该是Redis官方在3.0版本中推出的Redis Cluster分片方案。

本文不会对Redis Cluster的具体安装和部署细节进行介绍,重点介绍Redis Cluster带来的好处与弊端。

Redis Cluster的能力

  • 能够自动将数据分散在多个节点上
  • 当访问的key不在当前分片上时,能够自动将请求转发至正确的分片
  • 当集群中部分节点失效时仍能提供服务

其中第三点是基于主从复制来实现的,Redis Cluster的每个数据分片都采用了主从复制的结构,原理和前文所述的主从复制完全一致,唯一的区别是省去了Redis Sentinel这一额外的组件,由Redis Cluster负责进行一个分片内部的节点监控和自动failover。

Redis Cluster分片原理

Redis Cluster中共有16384个hash slot,Redis会计算每个key的CRC16,将结果与16384取模,来决定该key存储在哪一个hash slot中,同时需要指定Redis Cluster中每个数据分片负责的Slot数。Slot的分配在任何时间点都可以进行重新分配。

客户端在对key进行读写操作时,可以连接Cluster中的任意一个分片,如果操作的key不在此分片负责的Slot范围内,Redis Cluster会自动将请求重定向到正确的分片上。

hash tags

在基础的分片原则上,Redis还支持hash tags功能,以hash tags要求的格式明明的key,将会确保进入同一个Slot中。例如:{uiv}user:1000和{uiv}user:1001拥有同样的hash tag {uiv},会保存在同一个Slot中。

使用Redis Cluster时,pipelining、事务和LUA Script功能涉及的key必须在同一个数据分片上,否则将会返回错误。如要在Redis Cluster中使用上述功能,就必须通过hash tags来确保一个pipeline或一个事务中操作的所有key都位于同一个Slot中。

有一些客户端(如Redisson)实现了集群化的pipelining操作,可以自动将一个pipeline里的命令按key所在的分片进行分组,分别发到不同的分片上执行。但是Redis不支持跨分片的事务,事务和LUA Script还是必须遵循所有key在一个分片上的规则要求。

主从复制 vs 集群分片

在设计软件架构时,要如何在主从复制和集群分片两种部署方案中取舍呢?

从各个方面看,Redis Cluster都是优于主从复制的方案

  • Redis Cluster能够解决单节点上数据量过大的问题
  • Redis Cluster能够解决单节点访问压力过大的问题
  • Redis Cluster包含了主从复制的能力

那是不是代表Redis Cluster永远是优于主从复制的选择呢?

并不是。

软件架构永远不是越复杂越好,复杂的架构在带来显著好处的同时,一定也会带来相应的弊端。采用Redis Cluster的弊端包括:

  • 维护难度增加。在使用Redis Cluster时,需要维护的Redis实例数倍增,需要监控的主机数量也相应增加,数据备份/持久化的复杂度也会增加。同时在进行分片的增减操作时,还需要进行reshard操作,远比主从模式下增加一个Slave的复杂度要高。
  • 客户端资源消耗增加。当客户端使用连接池时,需要为每一个数据分片维护一个连接池,客户端同时需要保持的连接数成倍增多,加大了客户端本身和操作系统资源的消耗。
  • 性能优化难度增加。你可能需要在多个分片上查看Slow Log和Swap日志才能定位性能问题。
  • 事务和LUA Script的使用成本增加。在Redis Cluster中使用事务和LUA Script特性有严格的限制条件,事务和Script中操作的key必须位于同一个分片上,这就使得在开发时必须对相应场景下涉及的key进行额外的规划和规范要求。如果应用的场景中大量涉及事务和Script的使用,如何在保证这两个功能的正常运作前提下把数据平均分到多个数据分片中就会成为难点。

所以说,在主从复制和集群分片两个方案中做出选择时,应该从应用软件的功能特性、数据和访问量级、未来发展规划等方面综合考虑,只在确实有必要引入数据分片时再使用Redis Cluster。
下面是一些建议:

  1. 需要在Redis中存储的数据有多大?未来2年内可能发展为多大?这些数据是否都需要长期保存?是否可以使用LRU算法进行非热点数据的淘汰?综合考虑前面几个因素,评估出Redis需要使用的物理内存。
  2. 用于部署Redis的主机物理内存有多大?有多少可以分配给Redis使用?对比(1)中的内存需求评估,是否足够用?
  3. Redis面临的并发写压力会有多大?在不使用pipelining时,Redis的写性能可以超过10万次/秒(更多的benchmark可以参考 https://redis.io/topics/benchmarks )
  4. 在使用Redis时,是否会使用到pipelining和事务功能?使用的场景多不多?

综合上面几点考虑,如果单台主机的可用物理内存完全足以支撑对Redis的容量需求,且Redis面临的并发写压力距离Benchmark值还尚有距离,建议采用主从复制的架构,可以省去很多不必要的麻烦。同时,如果应用中大量使用pipelining和事务,也建议尽可能选择主从复制架构,可以减少设计和开发时的复杂度。

Redis Java客户端的选择

Redis的Java客户端很多,官方推荐的有三种:Jedis、Redisson和lettuce。

在这里对Jedis和Redisson进行对比介绍

Jedis:

  • 轻量,简洁,便于集成和改造
  • 支持连接池
  • 支持pipelining、事务、LUA Scripting、Redis Sentinel、Redis Cluster
  • 不支持读写分离,需要自己实现
  • 文档差(真的很差,几乎没有……)

Redisson:

  • 基于Netty实现,采用非阻塞IO,性能高
  • 支持异步请求
  • 支持连接池
  • 支持pipelining、LUA Scripting、Redis Sentinel、Redis Cluster
  • 不支持事务,官方建议以LUA Scripting代替事务
  • 支持在Redis Cluster架构下使用pipelining
  • 支持读写分离,支持读负载均衡,在主从复制和Redis Cluster架构下都可以使用
  • 内建Tomcat Session Manager,为Tomcat 6/7/8提供了会话共享功能
  • 可以与Spring Session集成,实现基于Redis的会话共享
  • 文档较丰富,有中文文档

对于Jedis和Redisson的选择,同样应遵循前述的原理,尽管Jedis比起Redisson有各种各样的不足,但也应该在需要使用Redisson的高级特性时再选用Redisson,避免造成不必要的程序复杂度提升。

Jedis:
github:https://github.com/xetorthio/jedis
文档:https://github.com/xetorthio/jedis/wiki

Redisson:
github:https://github.com/redisson/redisson
文档:https://github.com/redisson/redisson/wiki

1. 什么是redis

Redis是一个nosql的高性能Key-Value内存数据库,支持网络,亦可本地持久化。3.0.0Beta版已支持集群。

详细资料可见http://www.redis.cn/

2. Redis关键参数

? 客户端最大连接数(maxclients)

可能的错误信息:max number of clients reached。

默认为0,即不限制,一般不需要更改,所以客户端连接限制,取决于操作系统参数ulimit -n(max open files),可通过修改/etc/security/limits.conf文件以永久生效。

以下场景在性能压测时出现,涉及三个参数:

可能的错误信息:scheduled to be closed ASAP for overcoming of output buffer limits。

有时候明明master/slave都活得好好的,突然间就说要重新进行全同步了:

1.Slave显示:# MASTER time out: no data nor PING received…

2.Master显示:# Client addr=10.175.162.123:44670 flags=S oll=104654 omem=2147487792 events=rw cmd=sync scheduled to be closed ASAP for overcoming of output buffer limits.

? 主从响应策略(repl-ping-slave-period/repl-timeout)

slave会每隔repl-ping-slave-period(默认10秒)ping一次master,如果超过repl-timeout(默认 60秒)都没有收到响应,就会认为Master挂了。如果Master明明没挂但被阻塞住了也会报这个错。可以适当调大repl-timeout。

? 客户端输出缓冲区(client-output-buffer-limit)

该参数有三种场景策略,主要是第二种slave场景。当使用主从复制时,性能压测下,数据量会急剧增长,导致从节点需要复制的数据很大,消耗时长增加。slave没挂但被阻塞住了,比如正在loading Master发过来的RDB, Master的指令不能立刻发送给slave,就会放在output buffer中(见oll是命令数量,omem是大小),在配置文件中有如下配置:client-output-buffer-limit slave 256mb 64mb 60, 这是说负责发数据给slave的client,如果buffer超过256m或者连续60秒超过64m,就会被立刻强行关闭。所以此时应该相应调大数值,否则就会出现很悲剧的循环:Master传输一个很大的RDB给Slave,Slave努力地装载,但还没装载完,Master对client的缓存满了,再来一次。

平时可以在master执行 redis-cli client list 找那个cmd=sync,flag=S的client,注意OMem的变化。

? 日志级别和输出(loglevel、logfile)

生产可调整为warning级别,并重定向到某个文件。这对排除问题很有帮助。

3. 性能调优

? 内存分配限制

可能的错误信息:Cannot allocate memory

Redis在主从复制时,需要fork子进程来进行操作,如果你的应用堆积了很大数据在内存中,那么就需要针对这个子进程申请相应的内存空间,此时会受到操作系统的限制。通过更改系统配置文件/etc/sysctl.conf的vm.overcommit_memory=1以永久生效。该参数有0、1、2三个值。1表示允许分配所有的物理内存,而不管当前的内存状态如何。

? 客户端频繁获取连接限制

可能的错误信息:Cannot assign requested address

频繁地连服务器,但每次连接都在短时间内结束,导致很多的TIME_WAIT,以至于用光端口号,所以新连接没办法绑定端口。修改如下2个内核参数:

sysctl -w net.ipv4.tcp_timestamps=1,开启对于TCP时间戳的支持,若该项设置为0,则下面一项设置不起作用;

sysctl -w net.ipv4.tcp_tw_recycle=1,表示开启TCP连接中TIME-WAIT sockets的快速回收。

一、 Redis部署结构优化建议

1. Master不做AOF或RDB持久化,Slave做AOF持久化,建议同时做RDB持久化 
2. 所有Master全部增加Slave 
3. Master挂载Slave不超过2个,采用M-S-S方式挂载。若想保证高可用,即主从切换,可采用Keepalived机制.

备注:以上是基于Redis部署结构不合理提出的建议,同时也参考了新浪微博、淘宝架构中Redis优化方案给出

二、 Redis配置优化建议

1.tcp-keepalive 60
阻止由于某个command执行过长达到timeout超时时间而被断开连接,且可以提高连接错误的检测.
  • 1
  • 2
2.stop-writes-on-bgsave-error no
当bgsave快照操作出错时停止写数据到磁盘,这样后面写操作均会失败,为了不影响后续写操作,故需将该项值改为no.
  • 1
  • 2
3.rdbchecksum no
检查RDB数据的正确性,会牺牲10%的性能,故建议关闭.
  • 1
  • 2
4.auto-aof-rotate-max-size  20gb
auto-aof-rotate-max-total 4
auto-aof-rewrite-percentage 0 (关闭rewrite模式)
将AOF rewrite模式改为rotate模式,即将AOF在线实时Rewrite的功能,切换到线下操作,1份AOF文件切割成多份(类似日志切割),这样提升了redis性能的同时提升内存的利用率.
  • 1
  • 2
  • 3
  • 4
5.no-appendfsync-on-rewrite  yes
避免新修改数据刷磁盘时出现IO阻塞
  • 1
  • 2

备注:以上是基于Redis配置不合理提出的优化建议

三、 系统内核配置优化建议

1.开启了AOF模式,为了缓解IO阻塞 
编辑/etc/sysctl.conf ,添加如下配置:

vm.dirty_background_ratio = 5
vm.dirty_ratio = 10
  • 1
  • 2

然后sysctl -p 使配置文件生效.

2.开启了RDB模式,为了避免Fork失败

编辑/etc/sysctl.conf ,改vm.overcommit_memory=1, 
然后sysctl -p 使配置文件生效

备注:以上是基于测试结果给出的系统内核优化建议

后续计划:

以上是从架构角度提出的优化建议,后续会从业务角度,分析内存类型是否合理、冷热数据划分是否合理等

备注: 
关于冷热数据划分,可使用如下Redis命令进行统计分析:

OBJECT REFCOUNT 该命令主要用于调试(debugging),它能够返回指定key所对应value被引用的次数.

OBJECT ENCODING 该命令返回指定key对应value所使用的内部表示(representation)(译者注:也可以理解为数据的压缩方式).

OBJECT IDLETIME 该命令返回指定key对应的value自被存储之后空闲的时间,以秒为单位(没有读写操作的请求) ,这个值返回以10秒为单位的秒级别时间,这一点可能在以后的实现中改善

原文地址:https://www.cnblogs.com/AmilyWilly/p/8780085.html

时间: 2024-10-10 07:03:59

Redis性能调优的相关文章

redis性能调优笔记(can not get Resource from jedis pool和jedis connect time out)

对这段时间redis性能调优做一个记录. 1.单进程单线程 redis是单进程单线程实现的,如果你没有特殊的配置,redis内部默认是FIFO排队,即你对redis的访问都是要在redis进行排队,先入先出的串行执行. 之所以能够保持高性能是因为以下3点: 1)内存操作 2)数据结构简单 3)大多数是hash操作 redis基本的命令耗时都是us级别的,所以及时是单进程单线程,也能保证很高的QPS. 2.can not get Resource from jedis pool和jedis con

Redis性能调优:保存SNAPSHOT对性能的影响

前一段时间,开发环境反馈,Redis服务器访问非常慢,每个请求要数秒时间,重启之后2~3天又会这样. 我查看了一下Linux的性能,没有什么问题.通过 # redis-cli --latency 发现访问Redis确实很慢,执行info要几秒时间.里面有个参数已连接的客户端几万个,通过 Redis>client list 查看到很多client的age都很大,一直没有释放.于是怀疑是不是和这个有关,因为版本是2.8.6,无法通过client一次性kill掉所有的连接,只能写一个程序,一个一个地k

StackExchange.Redis性能调优

大家经常出现同步调用Redis超时的问题,但改成异步之后发现错误非常少了,但却可能通过前后记日志之类的发现Redis命令非常慢. PS: 以后代码都在Windows bash中运行,StackExchange.Redis版本为1.2.6    先快速重现问题和解决问题,大家先运行下面的代码 public static async Task Main(string[] args) { ThreadPool.SetMinThreads(8, 8); using (var connection = a

Redis基础、高级特性与性能调优

本文将从Redis的基本特性入手,通过讲述Redis的数据结构和主要命令对Redis的基本能力进行直观介绍.之后概览Redis提供的高级能力,并在部署.维护.性能调优等多个方面进行更深入的介绍和指导.本文适合使用Redis的普通开发人员,以及对Redis进行选型.架构设计和性能调优的架构设计人员. 目录 概述 Redis的数据结构和相关常用命令 数据持久化 内存管理与数据淘汰机制 Pipelining 事务与Scripting Redis性能调优 主从复制与集群分片 Redis Java客户端的

Redis 基础、高级特性与性能调优

本文将从Redis的基本特性入手,通过讲述Redis的数据结构和主要命令对Redis的基本能力进行直观介绍.之后概览Redis提供的高级能力,并在部署.维护.性能调优等多个方面进行更深入的介绍和指导. 本文适合使用Redis的普通开发人员,以及对Redis进行选型.架构设计和性能调优的架构设计人员. 目录 概述 Redis的数据结构和相关常用命令 数据持久化 内存管理与数据淘汰机制 Pipelining 事务与Scripting Redis性能调优 主从复制与集群分片 Redis Java客户端

linux性能调优总结

系统性能一直是个热门话题.做运维这几年也一直在搞性能调优,写这个文章也算是对工作的总结. 讲调优第一步是,要讲为什么要调优?也就是系统分析,分析还需要有指标,做好性能监控的情况下,看到确实需要调优才能进行.不能为了调优而 “调优“ 那不是调优,那是破坏. 性能分析的目的 找出系统性能瓶颈 为以后的优化提供方案或者参考 达到良好利用资源的目的.硬件资源和软件配置. 影响性能的因素 想确定有哪些因素,首先确定你的应用是什么类型的?例如: cpu密集型例如web服务器像nginx node.js需要C

openfire性能调优

1. 参考 http://blog.csdn.net/foxisme2/article/details/7521139 http://blog.csdn.net/foxisme2/article/details/7528148 其中生成测试报告的 命令 由于我本机tsung 的安装路径和上面资料的不同 需要使用 /usr/local/lib/tsung/bin/tsung_stats.pl   (使用 whereis tsung 找到tsung 的安装路径) 其中配置文件  <client ho

java架构师课程、性能调优、高并发、tomcat负载均衡、大型电商项目实战、高可用、高可扩展、数据库架构设计、Solr集群与应用、分布式实战、主从复制、高可用集群、大数据

15套Java架构师详情 * { font-family: "Microsoft YaHei" !important } h1 { background-color: #006; color: #FF0 } 15套java架构师.集群.高可用.高可扩展.高性能.高并发.性能优化.Spring boot.Redis.ActiveMQ.Nginx.Mycat.Netty.Jvm大型分布式项目实战视频教程 视频课程包含: 高级Java架构师包含:Spring boot.Spring  clo

hbase性能调优(1)

hbase性能调优 标签: hbase 性能调优 | 发表时间:2014-05-17 15:10 | 作者:无尘道长 分享到: 出处:http://www.iteye.com 一.服务端调优 1.参数配置 1).hbase.regionserver.handler.count:该设置决定了处理RPC的线程数量,默认值是10,通常可以调大,比如:150,当请求内容很大(上MB,比如大的put.使用缓存的scans)的时候,如果该值设置过大则会占用过多的内存,导致频繁的GC,或者出现OutOfMem