numpy.random.randn()与rand()的区别

numpy中有一些常用的用来产生随机数的函数,randn()和rand()就属于这其中。

numpy.random.randn(d0, d1, …, dn)是从标准正态分布中返回一个或多个样本值。

numpy.random.rand(d0, d1, …, dn)的随机样本位于[0, 1)中。

代码:

import numpy as np 

arr1 = np.random.randn(2,4)
print(arr1)
print(‘******************************************************************‘)
arr2 = np.random.rand(2,4)
print(arr2)

原文地址:https://www.cnblogs.com/purepleasure/p/a65f8e734d657eaf90c00c4269a17097.html

时间: 2024-10-09 12:38:39

numpy.random.randn()与rand()的区别的相关文章

numpy.random.randn()和numpy.random.rand()

1 numpy.random.rand() (1)numpy.random.rand(d0,d1,-,dn) rand函数根据给定维度生成[0,1)之间的数据,包含0,不包含1 dn表格每个维度 返回值为指定维度的array (2) print(np.random.rand(2,4))生成一个2行4列的0到1之间的数组 [[0.16965512 0.97445517 0.51992353 0.73377611] [0.91446815 0.65995296 0.67720307 0.348090

[转]numpy.random.randn()用法

在python数据分析的学习和应用过程中,经常需要用到numpy的随机函数,由于随机函数random的功能比较多,经常会混淆或记不住,下面我们一起来汇总学习下. import numpy as np 1 numpy.random.rand() numpy.random.rand(d0,d1,…,dn) rand函数根据给定维度生成[0,1)之间的数据,包含0,不包含1 dn表格每个维度 返回值为指定维度的array np.random.rand(4,2) array([[ 0.02173903,

【转】np.random.random()函数 参数用法以及numpy.random系列函数大全

转自:https://www.cnblogs.com/DOMLX/p/9751471.html 1.np.random.random()函数参数 np.random.random((1000, 20)) 上面这个就代表生成1000行 20列的浮点数,浮点数都是从0-1中随机. 2.numpy.random.rand()函数用法 numpy.random.rand(d0, d1, ..., dn): 生成一个[0,1)之间的随机浮点数或N维浮点数组. 3.numpy.random.randn()函

numpy.random

在python数据分析的学习和应用过程中,经常需要用到numpy的随机函数,由于随机函数random的功能比较多,经常会混淆或记不住,下面我们一起来汇总学习下. import numpy as np 1 numpy.random.rand() numpy.random.rand(d0,d1,-,dn) rand函数根据给定维度生成[0,1)之间的数据,包含0,不包含1 dn表格每个维度 返回值为指定维度的array np.random.rand(4,2) array([[ 0.02173903,

no.random.randn

numpy中有一些常用的用来产生随机数的函数,randn就是其中一个,randn函数位于numpy.random中,函数原型如下: numpy.random.randn(d0, d1, ..., dn) 这个函数的作用就是从标准正态分布中返回一个或多个样本值.如果没有参数,则返回一个值.参数(d0, d1, -, dn)表示维度,参数的数值表示每个维度有多少个数,这些值都是从标准正态分布中随机取样得到的. >>> a = np.random.randn(1,2) >>>

[Python] numpy.random.rand

numpy.random.rand numpy.random.rand(d0, d1, ..., dn) Random values in a given shape. Create an array of the given shape and populate it with random samples from a uniform distribution over [0, 1). Parameters: d0, d1, ..., dn : int, optional The dimen

numpy.random之常用函数

在实际开发中,我们经常会使用随机函数,比如交叉验证,构造测试数据等.下面,是我常用的几个生成随机样本的函数: 1,rand(n1,n2,-,nn) 每一维度都是[0.0,1.0)半闭半开区间上的随机分布 2,randn(n1,n2,-,nn) 返回一个样本,具有标准正态分布 3,random([size]) sample([size]) Random_sample([size]) 返回随机的浮点数,在半开区间 [0.0, 1.0). 如果想了解更多的函数,可以看下下面这篇博客,写的比较全: py

随机抽样 (numpy.random)

随机抽样 (numpy.random) 简单的随机数据 rand(d0, d1, ..., dn) 随机值 >>> np.random.rand(3,2) array([[ 0.14022471, 0.96360618], #random [ 0.37601032, 0.25528411], #random [ 0.49313049, 0.94909878]]) #random randn(d0, d1, ..., dn) 返回一个样本,具有标准正态分布. Notes For rando

rand(),srand()区别

先从随机数的原理谈起. 计算机的随机数都是由伪随机数,即是由小M多项式序列生成.产生每个小序列都有一个初始值,即随机种子. srand()产生随机种子. rand()产生随机数 要保证计算机产生不相同的随机数,应保证它们的随机种子是不一样的. srand( (unsigned)time( NULL ) ); 就是以时间做为随机种子,因为每次你运行的时间总是不一样的. 补充一点是小M多项式序列的周期是65535,即每次利用一个随机种子生成的随机数的周期是65535,即你取得65535个随机数后它们