[AHOI2017/HNOI2017][bzoj4827] 礼物 [FFT]

题面

传送门

思路

首先,有一个结论:两个手环增加非负整数亮度,等于其中一个增加一个整数亮度(可以为负)

我们令增加量为$x$,旋转以后的原数列为${a}{b}$那么现在的费用就是:

$\sum_{i=1}^n\left(a_i+x-b_i\right)^2$

我们把第i项拿出来拆开,得到:

$\left(a_i+x-b_i\right)^2=a_i^2+b_i^2+x^2+2a_ix-2a_ib_i-2b_ix$

那么原式变成了

$\sum_{i=1}^na_i^2+\sum_{i=1}^nb_i^2+nx^2+2x\left(\sum_{i=1}^na_i-\sum_{i=1}^nb_i\right)-2\sum_{i=1}^na_ib_i$

我们发现,这个式子除了最后一项之外都是确定的QwQ

那么我们只要令最后一项最大,那么就可以得到最小的费用值了

现在问题转化为求$\sum_{i=1}^na_ib_i$的最大值

等等,这个形式......

我们把数列${a}$反过来,变成

$\sum_{i=1}^na_{n-i+1}b_i$

这不是一个卷积吗~

所以把反过来的数列${a}$倍长,和数列${b}$卷积,得到的项里面的第n+1到n*2项的最大值,就是$\sum_{i=1}^na_ib_i$的最大值

然后把前面的不变项加上,就是答案了

Code:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define ll long long
#define inf 1e15
using namespace std;
inline int read(){
    int re=0,flag=1;char ch=getchar();
    while(ch>'9'||ch<'0'){
        if(ch=='-') flag=-1;
        ch=getchar();
    }
    while(ch>='0'&&ch<='9') re=(re<<1)+(re<<3)+ch-'0',ch=getchar();
    return re*flag;
}
struct complex{
    double x,y;
    complex(double xx=0,double yy=0){x=xx;y=yy;}
    complex operator +(const complex &b){return complex(x+b.x,y+b.y);}
    complex operator -(const complex &b){return complex(x-b.x,y-b.y);}
    complex operator *(const complex &b){return complex(x*b.x-y*b.y,x*b.y+y*b.x);}
}A[400010],B[400010];
const double pi=acos(-1.0);
int n,m,limit=1,cnt=0,r[400010];
void fft(complex *a,double type){
    int i,j,mid,k;complex x,y,w,wn;
    for(i=0;i<limit;i++) if(i<r[i]) swap(a[i],a[r[i]]);
    for(mid=1;mid<limit;mid<<=1){
        wn=complex(cos(pi/mid),type*sin(pi/mid));
        for(j=0;j<limit;j+=(mid<<1)){
            w=complex(1,0);
            for(k=0;k<mid;k++,w=w*wn){
                x=a[j+k];y=w*a[j+k+mid];
                a[j+k]=x+y;a[j+k+mid]=x-y;
            }
        }
    }
}
ll a1=0,a2=0,b1=0,b2=0,ans=inf;
int a[100010],b[100010];
int main(){
    ll i,j;
    n=read();m=read();
    for(i=1;i<=n;i++){
        a[i]=read();
        a1+=a[i]*a[i];a2+=a[i];
    }
    for(i=1;i<=n;i++){
        b[i]=read();
        b1+=b[i]*b[i];b2+=b[i];
    }
    for(i=1;i<=n;i++){
        A[i].x=A[i+n].x=a[i];
        B[i].x=b[n-i+1];
    }

    while(limit<=(n*3)) limit<<=1,cnt++;
    for(i=0;i<limit;i++) r[i]=((r[i>>1]>>1)|((i&1)<<(cnt-1)));

    fft(A,1);fft(B,1);
    for(i=0;i<=limit;i++) A[i]=A[i]*B[i];
    fft(A,-1);
    for(i=0;i<=limit;i++) A[i].x=(ll)(A[i].x/limit+0.5);

    for(i=1;i<=n;i++){
        for(j=-m;j<=m;j++){
            ans=min(ans,a1+b1+j*j*n+2ll*j*(a2-b2)-2ll*(ll)A[i+n].x);
        }
    }
    printf("%lld",ans);
}

原文地址:https://www.cnblogs.com/dedicatus545/p/8831000.html

时间: 2024-10-08 01:41:52

[AHOI2017/HNOI2017][bzoj4827] 礼物 [FFT]的相关文章

【bzoj4827】[Hnoi2017]礼物 FFT

题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一 个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在她生日的前一天,我的室友突 然发现他好像拿错了一个手环,而且已经没时间去更换它了!他只能使用一种特殊的方法,将其中一个手环中所有 装饰物的亮度增加一个相同的自然数 c(即非负整数).并且由于这个手环是一个圆,可以以任意的角度旋转它, 但是由于上面 装饰物的方向是固定的,所以手环不能翻转.需要在经过亮度改造和旋转

BZOJ 4827 [Hnoi2017]礼物 ——FFT

题目上要求一个循环卷积的最小值,直接破环成链然后FFT就可以了. 然后考虑计算的式子,可以分成两个部分分开计算. 前半部分FFT,后半部分扫一遍. #include <map> #include <ctime> #include <cmath> #include <queue> #include <cstdio> #include <cstring> #include <iostream> #include <alg

BZOJ4827 [Hnoi2017]礼物 多项式 FFT

原文链接http://www.cnblogs.com/zhouzhendong/p/8823962.html 题目传送门 - BZOJ4827 题意 有两个长为$n$的序列$x$和$y$,序列$x,y$的第$i$项分别是$x_i,y_i$. 选择一个序列$A$,现在你可以对它进行如下两种操作: $1.$ 得到一个和$A$循环同构的序列$A'$. $2.$ 给所有的$A'_i$都加上$c(c\in N^+)$,得到序列$A''$. 你进行上面两个操作之后,得到的序列分别为$x'',y''$(注意$

[bzoj4827][Hnoi2017]礼物_FFT

礼物 bzoj-4827 Hnoi-2017 题目大意:给定两个长度为$n$的手环,第一个手环上的$n$个权值为$x_i$,第二个为$y_i$.现在我可以同时将所有的$x_i$同时加上自然数$c$.我也可以将第一个手环任意旋转.旋转后每一个$x$对应一个$y$,那么代价为$\sum\limits_{i=0}^{n-1} (x_i-y_i)^2$.求最小代价. 注释:$1\le n\le 10^5$,$0\le maxval \le 100$. 想法: 水题啊..... 推推式子,我们假设就加了$

BZOJ4827: [Hnoi2017]礼物

4827: [Hnoi2017]礼物 Time Limit: 60 Sec  Memory Limit: 512 MBSubmit: 474  Solved: 334[Submit][Status][Discuss] Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一 个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在她生日的前一天,我的室友突 然发现他好像拿错了一个手环,而且已经没时间去更换它了

bzoj 4827: [HNOI2017]礼物 (FFT)

一道FFT 然而据说暴力可以水70分 然而我省选的时候看到了直接吓傻了  连暴力都没打 太弱了啊QAQ emmmm 详细的拆开就看其他题解吧233 最后那一步卷积其实我一直没明白 后来画画图终于懂了 只要把其中一个反过来 多项式乘法的结果中的每一项系数就对应某一个Σx[i] * y[j] 的结果 前面几项是不完全的结果 但是太小了就被忽略啦 代码如下 /************************************************************** Problem:

[BZOJ 4827][Hnoi2017]礼物(FFT)

Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一 个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在她生日的前一天,我的室友突 然发现他好像拿错了一个手环,而且已经没时间去更换它了!他只能使用一种特殊的方法,将其中一个手环中所有 装饰物的亮度增加一个相同的自然数 c(即非负整数).并且由于这个手环是一个圆,可以以任意的角度旋转它, 但是由于上面 装饰物的方向是固定的,所以手环不能翻转.需要在经过

BZOJ4827:[AH2017/HNOI2017]礼物——题解

https://www.lydsy.com/JudgeOnline/problem.php?id=4827 https://www.luogu.org/problemnew/show/P3723 题面见原题. 参考了洛谷一些题解. 先推式子,x数组为a,y数组为b,将b数组倍长后有: 因为c的范围在[-m,m]之间,而m=100,且稍加思考后发现k在1,3,4项中是无用的,所以通过枚举c取得1,3,4项和的最小值. 考虑计算第二项,其实是卷积型,实际上将a数组前移并倒转即可得到: 变成了卷积,F

HNOI2017礼物

礼物 这估计是最水,最无脑的一道题了 首先发现总和最接近时答案最小 发现答案就是\((\sum_{i=1}^{n}a[i]^2+b[i]^2)-2*max(\sum_{i=1}^{n}a[i]*b[i+j])(0<=j<=n-1)\) 前面随便算,主要是后面那个式子,其实就是两个数列错位相乘加起来最大值 把\(b\)反过来就变成\(\sum_{i=1}^{n}a[i]*b[n-i-j])(0<=j<=n-1)\),直接就多项式卷积,FFT一算就行了. // luogu-judger