Python高级数据结构(一)

数据结构

数据结构的概念很好理解,就是用来将数据组织在一起的结构。换句话说,数据结构是用来存储一系列关联数据的东西。在Python中有四种内建的数据结构,分别是List、Tuple、Dictionary以及Set。大部分的应用程序不需要其他类型的数据结构,但若是真需要也有很多高级数据结构可供选择,例如Collection、Array、Heapq、Bisect、Weakref、Copy以及Pprint。本文将介绍这些数据结构的用法,看看它们是如何帮助我们的应用程序的。

关于四种内建数据结构的使用方法很简单,并且网上有很多参考资料,因此本文将不会讨论它们。

1. Collections

1.1 Counter()

如果你想统计一个单词在给定的序列中一共出现了多少次,诸如此类的操作就可以用到Counter。来看看如何统计一个list中出现的item次数:

from collections import Counter

li = ["Dog", "Cat", "Mouse", 42, "Dog", 42, "Cat", "Dog"]
a = Counter(li)
print a
#Counter({‘Dog‘: 3, 42: 2, ‘Cat‘: 2, ‘Mouse‘: 1})

若要统计一个list中不同单词的数目,可以这么用:

from collections import Counter

li = ["Dog", "Cat", "Mouse", 42, "Dog", 42, "Cat", "Dog"]
a = Counter(li)
print a # Counter({‘Dog‘: 3, 42: 2, ‘Cat‘: 2, ‘Mouse‘: 1})

print len(set(li)) # 4

如果需要对结果进行分组,可以这么做:

from collections import Counter

li = ["Dog", "Cat", "Mouse","Dog","Cat", "Dog"]
a = Counter(li)

print a # Counter({‘Dog‘: 3, ‘Cat‘: 2, ‘Mouse‘: 1})

print "{0} : {1}".format(a.values(),a.keys())  # [1, 3, 2] : [‘Mouse‘, ‘Dog‘, ‘Cat‘]

print(a.most_common(3)) # [(‘Dog‘, 3), (‘Cat‘, 2), (‘Mouse‘, 1)]
1.2 deque

deque即双头队列,队列元素能够在队列两端添加或删除。Deque支持线程安全的,经过优化的append和pop操作,在队列两端的相关操作都能达到近乎O(1)的时间复杂度

以下的例子是执行基本的队列操作:

from collections import deque
q = deque(range(5))
q.append(5)
q.appendleft(6)
print q
print q.pop()
print q.popleft()
print q.rotate(3)
print q
print q.rotate(-1)
print q

# deque([6, 0, 1, 2, 3, 4, 5])
# 5
# 6
# None
# deque([2, 3, 4, 0, 1])
# None
# deque([3, 4, 0, 1, 2])
1.3 defaultdict

当查找一个不存在的键操作发生时,它的default_factory会被调用,提供一个默认的值,并将这对键值存储下来。其他的参数同普通的字典一致。

defaultdict对象可以用来追踪单词的位置,如:

from collections import defaultdict

s = "the quick brown fox jumps over the lazy dog"

words = s.split()
location = defaultdict(list)
for m, n in enumerate(words):
    location[n].append(m)

print location

# defaultdict(<type ‘list‘>, {‘brown‘: [2], ‘lazy‘: [7], ‘over‘: [5], ‘fox‘: [3],
# ‘dog‘: [8], ‘quick‘: [1], ‘the‘: [0, 6], ‘jumps‘: [4]})

是选择lists或sets与defaultdict搭配取决于你的目的,使用list能够保存你插入元素的顺序,而使用set则不关心元素插入顺序,它会帮助消除重复元素。

from collections import defaultdict

s = "the quick brown fox jumps over the lazy dog"

words = s.split()
location = defaultdict(set)
for m, n in enumerate(words):
    location[n].add(m)

print location

# defaultdict(<type ‘set‘>, {‘brown‘: set([2]), ‘lazy‘: set([7]),
# ‘over‘: set([5]), ‘fox‘: set([3]), ‘dog‘: set([8]), ‘quick‘: set([1]),
# ‘the‘: set([0, 6]), ‘jumps‘: set([4])})

另一种创建multidict的方法:

s = "the quick brown fox jumps over the lazy dog"
d = {}
words = s.split()

for key, value in enumerate(words):
    d.setdefault(key, []).append(value)
print d

# {0: [‘the‘], 1: [‘quick‘], 2: [‘brown‘], 3: [‘fox‘], 4: [‘jumps‘], 5: [‘over‘], 6: [‘the‘], 7: [‘lazy‘], 8: [‘dog‘]}

一个更复杂的例子:

class Example(dict):
    def __getitem__(self, item):
        try:
            return dict.__getitem__(self, item)
        except KeyError:
            value = self[item] = type(self)()
            return value

a = Example()

a[1][2][3] = 4
a[1][3][3] = 5
a[1][2][‘test‘] = 6

print a # {1: {2: {‘test‘: 6, 3: 4}, 3: {3: 5}}}

原文地址:https://www.cnblogs.com/borishou/p/8394732.html

时间: 2024-10-27 14:51:22

Python高级数据结构(一)的相关文章

Python高级数据结构-Collections模块

在Python数据类型方法精心整理,不必死记硬背,看看源码一切都有了之中,认识了python基本的数据类型和数据结构,现在认识一个高级的:Collections 这个模块对上面的数据结构做了封装,增加了一些很酷的数据结构,比如: a)Counter: 计数器,用于统计元素的数量 b)OrderDict:有序字典 c)defaultdict:值带有默认类型的字典 d)namedtuple:可命名元组,通过名字来访问元组元素 e)deque :双向队列,队列头尾都可以放,也都可以取(与单向队列对比,

Python中的高级数据结构

数据结构 数据结构的概念很好理解,就是用来将数据组织在一起的结构.换句话说,数据结构是用来存储一系列关联数据的东西.在Python中有四种内建的数据结构,分别是List.Tuple.Dictionary以及Set.大部分的应用程序不需要其他类型的数据结构,但若是真需要也有很多高级数据结构可供选择,例如Collection.Array.Heapq.Bisect.Weakref.Copy以及Pprint.本文将介绍这些数据结构的用法,看看它们是如何帮助我们的应用程序的. 关于四种内建数据结构的使用方

Python中的高级数据结构(转)

add by zhj: Python中的高级数据结构 数据结构 数据结构的概念很好理解,就是用来将数据组织在一起的结构.换句话说,数据结构是用来存储一系列关联数据的东西.在Python中有四种内建的数据 结构,分别是List.Tuple.Dictionary以及Set.大部分的应用程序不需要其他类型的数据结构,但若是真需要也有很多高级数据结构可供 选择,例如Collection.Array.Heapq.Bisect.Weakref.Copy以及Pprint.本文将介绍这些数据结构的用法,看 看它

Python中的高级数据结构详解

这篇文章主要介绍了Python中的高级数据结构详解,本文讲解了Collection.Array.Heapq.Bisect.Weakref.Copy以及Pprint这些数据结构的用法,需要的朋友可以参考下 数据结构 数据结构的概念很好理解,就是用来将数据组织在一起的结构.换句话说,数据结构是用来存储一系列关联数据的东西.在Python中有四种内建的数据结构,分别是List.Tuple.Dictionary以及Set.大部分的应用程序不需要其他类型的数据结构,但若是真需要也有很多高级数据结构可供选择

Python高级编程技巧(转)

译文:http://blog.jobbole.com/61171/ 本文展示一些高级的Python设计结构和它们的使用方法.在日常工作中,你可以根据需要选择合适的数据结构,例如对快速查找性的要求.对数据一致 性的要求或是对索引的要求等,同时也可以将各种数据结构合适地结合在一起,从而生成具有逻辑性并易于理解的数据模型.Python的数据结构从句法 上来看 非常直观,并且提供了大量的可选操作.这篇指南尝试将大部分常用的数据结构知识放到一起,并且提供对其最佳用法的探讨. 推导式(Comprehensi

python高级编程:有用的设计模式3

# -*- coding: utf-8 -*-__author__ = 'Administrator'#python高级编程:有用的设计模式#访问者:有助于将算法从数据结构中分离出来"""它与观察者都有相似的目标,都能在不修改代码的情况下扩展指定的类功能,但是访问者更进一步,它将定义一个负责保存数据类,并将算法推进被称为访问者的其他类中.这种行为和mvc范围(请看:http://en.wikipedia.org/wiki/model-view-controller)相当类似,

Python高级特性(1):Iterators、Generators和itertools(转)

译文:Python高级特性(1):Iterators.Generators和itertools [译注]:作为一门动态脚本语言,Python 对编程初学者而言很友好,丰富的第三方库能够给使用者带来很大的便利.而Python同时也能够提供一些高级的特性方便用户使用更为复杂的数据结构.本系 列文章共有三篇,本文是系列的第一篇,将会介绍迭代器.生成器以及itertools模块的相关用法.由于作者 Sahand Saba 列举的示例中有诸多专业的数学相关内容,因此翻译中有诸多不妥之处请大家指出,非常感谢

python高级之生成器&amp;迭代器

python高级之生成器&迭代器 本机内容 概念梳理 容器 可迭代对象 迭代器 for循环内部实现 生成器 1.概念梳理 容器(container):多个元素组织在一起的数据结构 可迭代对象(iterable):对象中含有__iter__()方法 迭代器(iterator):对象含有__next__()方法,并且迭代器也有__iter__()方法 生成器(generator):生成器其实是一种特殊的迭代器,不过这种迭代器更加优雅 列表/集合/字典推导式(list,set,dict compreh

GO语言的进阶之路-Golang高级数据结构定义

GO语言的进阶之路-Golang高级数据结构定义 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 我们之前学习过Golang的基本数据类型,字符串和byte,以及rune也有所了解,但是说起高级点的数据类型,可能我们还是不太清楚,那么今天就跟着我脚步一起学习一下这些高级数据类型数据吧.相信有部分人可能学习过Python,那么我这篇博客基本上不用看了,因为对你来说会觉得so easy.因为太多的相似之处了,只是写法不同.本章主要介绍数组(array),切片(scice),字典(m