「网络流24题」 5. 圆桌问题

「网络流24题」 5. 圆桌问题

<题目链接>



二分图多重匹配。

多对多。

匈牙利似乎真的不太好办了。

所以乖乖最大流吧。

套路建模,S->每个单位(边权=单位代表数);每个餐桌->T(边权=餐桌容量);每个单位->每个餐桌(边权=1)。

跑最大流。

最大流等于总代表数则有解,否则无解。

每个单位的出边中,每条满流边的终点便是这一单位每个代表的餐桌号。

#include <algorithm>
#include <climits>
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
const int MAXN=430,MAXM=82000;
int m,n,S,T,cnt,ans,head[MAXN],cur[MAXN],dis[MAXN];
struct edge
{
    int nxt,to,w;
}e[MAXM];
void AddEdge(int u,int v,int w)
{
    e[++cnt].nxt=head[u];
    e[cnt].to=v;
    e[cnt].w=w;
    head[u]=cnt;
}
void AddEdges(int u,int v,int w)
{
    AddEdge(u,v,w);
    AddEdge(v,u,0);
}
bool BFS(void)
{
    queue<int> q;
    memset(dis,0,sizeof dis);
    q.push(S);
    dis[S]=1;
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        for(int i=head[u],v;i;i=e[i].nxt)
            if(e[i].w && !dis[v=e[i].to])
            {
                q.push(v);
                dis[v]=dis[u]+1;
            }
    }
    return dis[T];
}
int DFS(int u,int k)
{
    if(u==T || !k)
        return k;
    int t=0;
    for(int i=head[u],v,f;i;i=e[i].nxt)
        if(e[i].w && dis[v=e[i].to]==dis[u]+1 && (f=DFS(v,min(k,e[i].w))))
        {
            cur[u]=i;
            e[i].w-=f;
            e[((i-1)^1)+1].w+=f;
            k-=f;
            t+=f;
        }
    if(!t)
        dis[u]=0;
    return t;
}
void Dinic(void)
{
    int f;
    while(BFS())
        while(memcpy(cur,head,sizeof cur),f=DFS(S,INT_MAX))
            ans-=f;
}
void Print(void)
{
    printf("1\n");
    for(int u=1;u<=m;++u)
    {
        for(int i=head[u],v;i;i=e[i].nxt)
            if((v=e[i].to) && !e[i].w)
                printf("%d ",v-m);
        printf("\n");
    }
}
int main(int argc,char *argv[])
{
    scanf("%d %d",&m,&n);
    T=m+n+1;
    for(int i=1,w;i<=m;++i)
    {
        scanf("%d",&w);
        ans+=w;
        AddEdges(S,i,w);
        for(int j=1;j<=n;++j)
            AddEdges(i,j+m,1);
    }
    for(int i=1,w;i<=n;++i)
    {
        scanf("%d",&w);
        AddEdges(i+m,T,w);
    }
    Dinic();
    if(ans)
        printf("0\n");
    else
        Print();
    return 0;
}

谢谢阅读

原文地址:https://www.cnblogs.com/Capella/p/8244737.html

时间: 2024-11-10 16:12:54

「网络流24题」 5. 圆桌问题的相关文章

LiberOJ 6004. 「网络流 24 题」圆桌聚餐 网络流版子题

#6004. 「网络流 24 题」圆桌聚餐 内存限制:256 MiB时间限制:5000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 假设有来自 n nn 个不同单位的代表参加一次国际会议.每个单位的代表数分别为 ri r_ir?i??.会议餐厅共有 m mm 张餐桌,每张餐桌可容纳 ci c_ic?i?? 个代表就餐.为了使代表们充分交流,希望从同一个单位来的代表不在同一个餐桌就餐. 试设计一个算法,给出满足要求的

「网络流24题」 题目列表

「网络流24题」 题目列表 序号 题目标题 模型 题解 1 飞行员配对方案问题 二分图最大匹配 <1> 2 太空飞行计划问题 最大权闭合子图 <2> 3 最小路径覆盖问题 二分图最小路径覆盖 <3> 4 魔术球问题 <4> 5 圆桌问题 <5> 6 最长递增子序列问题 <6> 7 试题库问题 <7> 8 机器人路径规划问题 <8> 9 方格取数问题 二分图最大点权独立集 <9> 10 餐巾计划问题

LibreOJ #6001. 「网络流 24 题」太空飞行计划 最大权闭合图

#6001. 「网络流 24 题」太空飞行计划 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 W 教授正在为国家航天中心计划一系列的太空飞行.每次太空飞行可进行一系列商业性实验而获取利润.现已确定了一个可供选择的实验集合 E={E1,E2,?,Em} E = \{ E_1, E_2, \cdots, E_m \}E={E?1??,E?2??,?,E?m??},和进行这些实验

LiberOJ #6013. 「网络流 24 题」负载平衡 最小费用最大流 供应平衡问题

#6013. 「网络流 24 题」负载平衡 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 G 公司有 n nn 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 n nn 个仓库的库存数量相同.搬运货物时,只能在相邻的仓库之间搬运. 输入格式 文件的第 1 11 行中有 1 11 个正整数 n nn,表示有 n nn 个仓库.第 2 22 行中有 n nn 个

LiberOJ #6000. 「网络流 24 题」搭配飞行员 最大匹配

#6000. 「网络流 24 题」搭配飞行员 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 飞行大队有若干个来自各地的驾驶员,专门驾驶一种型号的飞机,这种飞机每架有两个驾驶员,需一个正驾驶员和一个副驾驶员.由于种种原因,例如相互配合的问题,有些驾驶员不能在同一架飞机上飞行,问如何搭配驾驶员才能使出航的飞机最多. 因为驾驶工作分工严格,两个正驾驶员或两个副驾驶员都不能同机飞行. 输入格式 第一

LiberOJ #6002. 「网络流 24 题」最小路径覆盖

#6002. 「网络流 24 题」最小路径覆盖 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 给定有向图 G=(V,E) G = (V, E)G=(V,E).设 P PP 是 G GG 的一个简单路(顶点不相交)的集合.如果 V VV 中每个顶点恰好在 P PP 的一条路上,则称 P PP 是 G GG 的一个路径覆盖.P PP 中路径可以从 V VV 的任何一个顶点开始,

LiberOJ #6007. 「网络流 24 题」方格取数 最小割 最大点权独立集 最大流

#6007. 「网络流 24 题」方格取数 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 在一个有 m×n m \times nm×n 个方格的棋盘中,每个方格中有一个正整数. 现要从方格中取数,使任意 2 22 个数所在方格没有公共边,且取出的数的总和最大.试设计一个满足要求的取数算法. 输入格式 文件第 1 11 行有 2 22 个正整数 m mm 和 n nn,分别表示棋盘的行数和列数

LiberOJ 6003. 「网络流 24 题」魔术球 贪心或者最小路径覆盖

6003. 「网络流 24 题」魔术球 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 假设有 n nn 根柱子,现要按下述规则在这 n nn 根柱子中依次放入编号为 1,2,3,4,? 1, 2, 3, 4, \cdots1,2,3,4,? 的球. 每次只能在某根柱子的最上面放球. 在同一根柱子中,任何 2 22 个相邻球的编号之和为完全平方数. 试设计一个算法,计算出在 

[loj #6003]「网络流 24 题」魔术球 二分图最小路径覆盖,网络流

#6003. 「网络流 24 题」魔术球 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 假设有 n nn 根柱子,现要按下述规则在这 n nn 根柱子中依次放入编号为 1,2,3,4,? 1, 2, 3, 4, \cdots1,2,3,4,? 的球. 每次只能在某根柱子的最上面放球. 在同一根柱子中,任何 2 22 个相邻球的编号之和为完全平方数. 试设计一个算法,计算出在