pandas索引
html { font-family: sans-serif }
body { margin: 0 }
article,aside,details,figcaption,figure,footer,header,hgroup,main,menu,nav,section,summary { display: block }
audio,canvas,progress,video { display: inline-block; vertical-align: baseline }
audio:not([controls]) { display: none; height: 0 }
[hidden],template { display: none }
a { background-color: transparent }
a:active,a:hover { outline: 0 }
abbr[title] { border-bottom: 1px dotted }
b,strong { font-weight: bold }
dfn { font-style: italic }
h1 { font-size: 2em; margin: 0.67em 0 }
mark { background: #ff0; color: #000 }
small { font-size: 80% }
sub,sup { font-size: 75%; line-height: 0; position: relative; vertical-align: baseline }
sup { top: -0.5em }
sub { bottom: -0.25em }
img { border: 0 }
svg:not(:root) { overflow: hidden }
figure { margin: 1em 40px }
hr { height: 0 }
pre { overflow: auto }
code,kbd,pre,samp { font-family: monospace, monospace; font-size: 1em }
button,input,optgroup,select,textarea { color: inherit; font: inherit; margin: 0 }
button { overflow: visible }
button,select { text-transform: none }
button,html input[type="button"],input[type="reset"],input[type="submit"] { cursor: pointer }
button[disabled],html input[disabled] { cursor: default }
button::-moz-focus-inner,
input::-moz-focus-inner { border: 0; padding: 0 }
input { line-height: normal }
input[type="checkbox"],input[type="radio"] { padding: 0 }
input[type="number"]::-webkit-inner-spin-button,
input[type="number"]::-webkit-outer-spin-button { height: auto }
input[type="search"] { }
input[type="search"]::-webkit-search-cancel-button,
input[type="search"]::-webkit-search-decoration { }
fieldset { border: 1px solid #c0c0c0; margin: 0 2px; padding: 0.35em 0.625em 0.75em }
legend { border: 0; padding: 0 }
textarea { overflow: auto }
optgroup { font-weight: bold }
table { border-collapse: collapse; border-spacing: 0 }
td,th { padding: 0 }
.glyphicon { position: relative; top: 1px; display: inline-block; font-family: "Glyphicons Halflings"; font-style: normal; font-weight: normal; line-height: 1 }
.glyphicon-asterisk::before { content: "*" }
.glyphicon-plus::before { content: "+" }
.glyphicon-euro::before,.glyphicon-eur::before { content: "€" }
.glyphicon-minus::before { content: "?" }
.glyphicon-cloud::before { content: "?" }
.glyphicon-envelope::before { content: "?" }
.glyphicon-pencil::before { content: "?" }
.glyphicon-glass::before { content: "" }
.glyphicon-music::before { content: "" }
.glyphicon-search::before { content: "" }
.glyphicon-heart::before { content: "" }
.glyphicon-star::before { content: "" }
.glyphicon-star-empty::before { content: "" }
.glyphicon-user::before { content: "" }
.glyphicon-film::before { content: "" }
.glyphicon-th-large::before { content: "" }
.glyphicon-th::before { content: "" }
.glyphicon-th-list::before { content: "" }
.glyphicon-ok::before { content: "" }
.glyphicon-remove::before { content: "" }
.glyphicon-zoom-in::before { content: "" }
.glyphicon-zoom-out::before { content: "" }
.glyphicon-off::before { content: "" }
.glyphicon-signal::before { content: "" }
.glyphicon-cog::before { content: "" }
.glyphicon-trash::before { content: "" }
.glyphicon-home::before { content: "" }
.glyphicon-file::before { content: "" }
.glyphicon-time::before { content: "" }
.glyphicon-road::before { content: "" }
.glyphicon-download-alt::before { content: "" }
.glyphicon-download::before { content: "" }
.glyphicon-upload::before { content: "" }
.glyphicon-inbox::before { content: "" }
.glyphicon-play-circle::before { content: "" }
.glyphicon-repeat::before { content: "" }
.glyphicon-refresh::before { content: "" }
.glyphicon-list-alt::before { content: "" }
.glyphicon-lock::before { content: "" }
.glyphicon-flag::before { content: "" }
.glyphicon-headphones::before { content: "" }
.glyphicon-volume-off::before { content: "" }
.glyphicon-volume-down::before { content: "" }
.glyphicon-volume-up::before { content: "" }
.glyphicon-qrcode::before { content: "" }
.glyphicon-barcode::before { content: "" }
.glyphicon-tag::before { content: "" }
.glyphicon-tags::before { content: "" }
.glyphicon-book::before { content: "" }
.glyphicon-bookmark::before { content: "" }
.glyphicon-print::before { content: "" }
.glyphicon-camera::before { content: "" }
.glyphicon-font::before { content: "" }
.glyphicon-bold::before { content: "" }
.glyphicon-italic::before { content: "" }
.glyphicon-text-height::before { content: "" }
.glyphicon-text-width::before { content: "" }
.glyphicon-align-left::before { content: "" }
.glyphicon-align-center::before { content: "" }
.glyphicon-align-right::before { content: "" }
.glyphicon-align-justify::before { content: "" }
.glyphicon-list::before { content: "" }
.glyphicon-indent-left::before { content: "" }
.glyphicon-indent-right::before { content: "" }
.glyphicon-facetime-video::before { content: "" }
.glyphicon-picture::before { content: "" }
.glyphicon-map-marker::before { content: "" }
.glyphicon-adjust::before { content: "" }
.glyphicon-tint::before { content: "" }
.glyphicon-edit::before { content: "" }
.glyphicon-share::before { content: "" }
.glyphicon-check::before { content: "" }
.glyphicon-move::before { content: "" }
.glyphicon-step-backward::before { content: "" }
.glyphicon-fast-backward::before { content: "" }
.glyphicon-backward::before { content: "" }
.glyphicon-play::before { content: "" }
.glyphicon-pause::before { content: "" }
.glyphicon-stop::before { content: "" }
.glyphicon-forward::before { content: "" }
.glyphicon-fast-forward::before { content: "" }
.glyphicon-step-forward::before { content: "" }
.glyphicon-eject::before { content: "" }
.glyphicon-chevron-left::before { content: "" }
.glyphicon-chevron-right::before { content: "" }
.glyphicon-plus-sign::before { content: "" }
.glyphicon-minus-sign::before { content: "" }
.glyphicon-remove-sign::before { content: "" }
.glyphicon-ok-sign::before { content: "" }
.glyphicon-question-sign::before { content: "" }
.glyphicon-info-sign::before { content: "" }
.glyphicon-screenshot::before { content: "" }
.glyphicon-remove-circle::before { content: "" }
.glyphicon-ok-circle::before { content: "" }
.glyphicon-ban-circle::before { content: "" }
.glyphicon-arrow-left::before { content: "" }
.glyphicon-arrow-right::before { content: "" }
.glyphicon-arrow-up::before { content: "" }
.glyphicon-arrow-down::before { content: "" }
.glyphicon-share-alt::before { content: "" }
.glyphicon-resize-full::before { content: "" }
.glyphicon-resize-small::before { content: "" }
.glyphicon-exclamation-sign::before { content: "" }
.glyphicon-gift::before { content: "" }
.glyphicon-leaf::before { content: "" }
.glyphicon-fire::before { content: "" }
.glyphicon-eye-open::before { content: "" }
.glyphicon-eye-close::before { content: "" }
.glyphicon-warning-sign::before { content: "" }
.glyphicon-plane::before { content: "" }
.glyphicon-calendar::before { content: "" }
.glyphicon-random::before { content: "" }
.glyphicon-comment::before { content: "" }
.glyphicon-magnet::before { content: "" }
.glyphicon-chevron-up::before { content: "" }
.glyphicon-chevron-down::before { content: "" }
.glyphicon-retweet::before { content: "" }
.glyphicon-shopping-cart::before { content: "" }
.glyphicon-folder-close::before { content: "" }
.glyphicon-folder-open::before { content: "" }
.glyphicon-resize-vertical::before { content: "" }
.glyphicon-resize-horizontal::before { content: "" }
.glyphicon-hdd::before { content: "" }
.glyphicon-bullhorn::before { content: "" }
.glyphicon-bell::before { content: "" }
.glyphicon-certificate::before { content: "" }
.glyphicon-thumbs-up::before { content: "" }
.glyphicon-thumbs-down::before { content: "" }
.glyphicon-hand-right::before { content: "" }
.glyphicon-hand-left::before { content: "" }
.glyphicon-hand-up::before { content: "" }
.glyphicon-hand-down::before { content: "" }
.glyphicon-circle-arrow-right::before { content: "" }
.glyphicon-circle-arrow-left::before { content: "" }
.glyphicon-circle-arrow-up::before { content: "" }
.glyphicon-circle-arrow-down::before { content: "" }
.glyphicon-globe::before { content: "" }
.glyphicon-wrench::before { content: "" }
.glyphicon-tasks::before { content: "" }
.glyphicon-filter::before { content: "" }
.glyphicon-briefcase::before { content: "" }
.glyphicon-fullscreen::before { content: "" }
.glyphicon-dashboard::before { content: "" }
.glyphicon-paperclip::before { content: "" }
.glyphicon-heart-empty::before { content: "" }
.glyphicon-link::before { content: "" }
.glyphicon-phone::before { content: "" }
.glyphicon-pushpin::before { content: "" }
.glyphicon-usd::before { content: "" }
.glyphicon-gbp::before { content: "" }
.glyphicon-sort::before { content: "" }
.glyphicon-sort-by-alphabet::before { content: "" }
.glyphicon-sort-by-alphabet-alt::before { content: "" }
.glyphicon-sort-by-order::before { content: "" }
.glyphicon-sort-by-order-alt::before { content: "" }
.glyphicon-sort-by-attributes::before { content: "" }
.glyphicon-sort-by-attributes-alt::before { content: "" }
.glyphicon-unchecked::before { content: "" }
.glyphicon-expand::before { content: "" }
.glyphicon-collapse-down::before { content: "" }
.glyphicon-collapse-up::before { content: "" }
.glyphicon-log-in::before { content: "" }
.glyphicon-flash::before { content: "" }
.glyphicon-log-out::before { content: "" }
.glyphicon-new-window::before { content: "" }
.glyphicon-record::before { content: "" }
.glyphicon-save::before { content: "" }
.glyphicon-open::before { content: "" }
.glyphicon-saved::before { content: "" }
.glyphicon-import::before { content: "" }
.glyphicon-export::before { content: "" }
.glyphicon-send::before { content: "" }
.glyphicon-floppy-disk::before { content: "" }
.glyphicon-floppy-saved::before { content: "" }
.glyphicon-floppy-remove::before { content: "" }
.glyphicon-floppy-save::before { content: "" }
.glyphicon-floppy-open::before { content: "" }
.glyphicon-credit-card::before { content: "" }
.glyphicon-transfer::before { content: "" }
.glyphicon-cutlery::before { content: "" }
.glyphicon-header::before { content: "" }
.glyphicon-compressed::before { content: "" }
.glyphicon-earphone::before { content: "" }
.glyphicon-phone-alt::before { content: "" }
.glyphicon-tower::before { content: "" }
.glyphicon-stats::before { content: "" }
.glyphicon-sd-video::before { content: "" }
.glyphicon-hd-video::before { content: "" }
.glyphicon-subtitles::before { content: "" }
.glyphicon-sound-stereo::before { content: "" }
.glyphicon-sound-dolby::before { content: "" }
.glyphicon-sound-5-1::before { content: "" }
.glyphicon-sound-6-1::before { content: "" }
.glyphicon-sound-7-1::before { content: "" }
.glyphicon-copyright-mark::before { content: "" }
.glyphicon-registration-mark::before { content: "" }
.glyphicon-cloud-download::before { content: "" }
.glyphicon-cloud-upload::before { content: "" }
.glyphicon-tree-conifer::before { content: "" }
.glyphicon-tree-deciduous::before { content: "" }
.glyphicon-cd::before { content: "" }
.glyphicon-save-file::before { content: "" }
.glyphicon-open-file::before { content: "" }
.glyphicon-level-up::before { content: "" }
.glyphicon-copy::before { content: "" }
.glyphicon-paste::before { content: "" }
.glyphicon-alert::before { content: "" }
.glyphicon-equalizer::before { content: "" }
.glyphicon-king::before { content: "" }
.glyphicon-queen::before { content: "" }
.glyphicon-pawn::before { content: "" }
.glyphicon-bishop::before { content: "" }
.glyphicon-knight::before { content: "" }
.glyphicon-baby-formula::before { content: "" }
.glyphicon-tent::before { content: "?" }
.glyphicon-blackboard::before { content: "" }
.glyphicon-bed::before { content: "" }
.glyphicon-apple::before { content: "?" }
.glyphicon-erase::before { content: "" }
.glyphicon-hourglass::before { content: "?" }
.glyphicon-lamp::before { content: "" }
.glyphicon-duplicate::before { content: "" }
.glyphicon-piggy-bank::before { content: "" }
.glyphicon-scissors::before { content: "" }
.glyphicon-bitcoin::before { content: "" }
.glyphicon-btc::before { content: "" }
.glyphicon-xbt::before { content: "" }
.glyphicon-yen::before { content: "¥" }
.glyphicon-jpy::before { content: "¥" }
.glyphicon-ruble::before { content: "?" }
.glyphicon-rub::before { content: "?" }
.glyphicon-scale::before { content: "" }
.glyphicon-ice-lolly::before { content: "" }
.glyphicon-ice-lolly-tasted::before { content: "" }
.glyphicon-education::before { content: "" }
.glyphicon-option-horizontal::before { content: "" }
.glyphicon-option-vertical::before { content: "" }
.glyphicon-menu-hamburger::before { content: "" }
.glyphicon-modal-window::before { content: "" }
.glyphicon-oil::before { content: "" }
.glyphicon-grain::before { content: "" }
.glyphicon-sunglasses::before { content: "" }
.glyphicon-text-size::before { content: "" }
.glyphicon-text-color::before { content: "" }
.glyphicon-text-background::before { content: "" }
.glyphicon-object-align-top::before { content: "" }
.glyphicon-object-align-bottom::before { content: "" }
.glyphicon-object-align-horizontal::before { content: "" }
.glyphicon-object-align-left::before { content: "" }
.glyphicon-object-align-vertical::before { content: "" }
.glyphicon-object-align-right::before { content: "" }
.glyphicon-triangle-right::before { content: "" }
.glyphicon-triangle-left::before { content: "" }
.glyphicon-triangle-bottom::before { content: "" }
.glyphicon-triangle-top::before { content: "" }
.glyphicon-console::before { content: "" }
.glyphicon-superscript::before { content: "" }
.glyphicon-subscript::before { content: "" }
.glyphicon-menu-left::before { content: "" }
.glyphicon-menu-right::before { content: "" }
.glyphicon-menu-down::before { content: "" }
.glyphicon-menu-up::before { content: "" }
* { }
*::before,*::after { }
html { font-size: 10px }
body { font-family: "Helvetica Neue", Helvetica, Arial, sans-serif; font-size: 13px; line-height: 1.42857143; color: #000; background-color: #fff }
input,button,select,textarea { font-family: inherit; font-size: inherit; line-height: inherit }
a { color: #337ab7; text-decoration: none }
a:hover,a:focus { color: #23527c; text-decoration: underline }
a:focus { outline: 5px auto -webkit-focus-ring-color }
figure { margin: 0 }
img { vertical-align: middle }
.img-responsive,.thumbnail>img,.thumbnail a>img,.carousel-inner>.item>img,.carousel-inner>.item>a>img { display: block; max-width: 100%; height: auto }
.img-rounded { }
.img-thumbnail { padding: 4px; line-height: 1.42857143; background-color: #fff; border: 1px solid #ddd; display: inline-block; max-width: 100%; height: auto }
.img-circle { }
hr { margin-top: 18px; margin-bottom: 18px; border: 0; border-top: 1px solid #eeeeee }
.sr-only { position: absolute; width: 1px; height: 1px; margin: -1px; padding: 0; overflow: hidden; clip: rect(0, 0, 0, 0); border: 0 }
.sr-only-focusable:active,.sr-only-focusable:focus { position: static; width: auto; height: auto; margin: 0; overflow: visible; clip: auto }
[role="button"] { cursor: pointer }
h1,h2,h3,h4,h5,h6,.h1,.h2,.h3,.h4,.h5,.h6 { font-family: inherit; font-weight: 500; line-height: 1.1; color: inherit }
h1 small,h2 small,h3 small,h4 small,h5 small,h6 small,.h1 small,.h2 small,.h3 small,.h4 small,.h5 small,.h6 small,h1 .small,h2 .small,h3 .small,h4 .small,h5 .small,h6 .small,.h1 .small,.h2 .small,.h3 .small,.h4 .small,.h5 .small,.h6 .small { font-weight: normal; line-height: 1; color: #777777 }
h1,.h1,h2,.h2,h3,.h3 { margin-top: 18px; margin-bottom: 9px }
h1 small,.h1 small,h2 small,.h2 small,h3 small,.h3 small,h1 .small,.h1 .small,h2 .small,.h2 .small,h3 .small,.h3 .small { font-size: 65% }
h4,.h4,h5,.h5,h6,.h6 { margin-top: 9px; margin-bottom: 9px }
h4 small,.h4 small,h5 small,.h5 small,h6 small,.h6 small,h4 .small,.h4 .small,h5 .small,.h5 .small,h6 .small,.h6 .small { font-size: 75% }
h1,.h1 { font-size: 33px }
h2,.h2 { font-size: 27px }
h3,.h3 { font-size: 23px }
h4,.h4 { font-size: 17px }
h5,.h5 { font-size: 13px }
h6,.h6 { font-size: 12px }
p { margin: 0 0 9px }
.lead { margin-bottom: 18px; font-size: 14px; font-weight: 300; line-height: 1.4 }
small,.small { font-size: 92% }
mark,.mark { background-color: #fcf8e3; padding: .2em }
.text-left { text-align: left }
.text-right { text-align: right }
.text-center { text-align: center }
.text-justify { text-align: justify }
.text-nowrap { white-space: nowrap }
.text-lowercase { text-transform: lowercase }
.text-uppercase { text-transform: uppercase }
.text-capitalize { text-transform: capitalize }
.text-muted { color: #777777 }
.text-primary { color: #337ab7 }
a.text-primary:hover,a.text-primary:focus { color: #286090 }
.text-success { color: #3c763d }
a.text-success:hover,a.text-success:focus { color: #2b542c }
.text-info { color: #31708f }
a.text-info:hover,a.text-info:focus { color: #245269 }
.text-warning { color: #8a6d3b }
a.text-warning:hover,a.text-warning:focus { color: #66512c }
.text-danger { color: #a94442 }
a.text-danger:hover,a.text-danger:focus { color: #843534 }
.bg-primary { color: #fff; background-color: #337ab7 }
a.bg-primary:hover,a.bg-primary:focus { background-color: #286090 }
.bg-success { background-color: #dff0d8 }
a.bg-success:hover,a.bg-success:focus { background-color: #c1e2b3 }
.bg-info { background-color: #d9edf7 }
a.bg-info:hover,a.bg-info:focus { background-color: #afd9ee }
.bg-warning { background-color: #fcf8e3 }
a.bg-warning:hover,a.bg-warning:focus { background-color: #f7ecb5 }
.bg-danger { background-color: #f2dede }
a.bg-danger:hover,a.bg-danger:focus { background-color: #e4b9b9 }
.page-header { padding-bottom: 8px; margin: 36px 0 18px; border-bottom: 1px solid #eeeeee }
ul,ol { margin-top: 0; margin-bottom: 9px }
ul ul,ol ul,ul ol,ol ol { margin-bottom: 0 }
.list-unstyled { padding-left: 0; list-style: none }
.list-inline { padding-left: 0; list-style: none; margin-left: -5px }
.list-inline>li { display: inline-block; padding-left: 5px; padding-right: 5px }
dl { margin-top: 0; margin-bottom: 18px }
dt,dd { line-height: 1.42857143 }
dt { font-weight: bold }
dd { margin-left: 0 }
abbr[title],abbr[data-original-title] { cursor: help; border-bottom: 1px dotted #777777 }
.initialism { font-size: 90%; text-transform: uppercase }
blockquote { padding: 9px 18px; margin: 0 0 18px; font-size: inherit; border-left: 5px solid #eeeeee }
blockquote p:last-child,blockquote ul:last-child,blockquote ol:last-child { margin-bottom: 0 }
blockquote footer,blockquote small,blockquote .small { display: block; font-size: 80%; line-height: 1.42857143; color: #777777 }
blockquote footer::before,blockquote small::before,blockquote .small::before { content: "—?" }
.blockquote-reverse,blockquote.pull-right { padding-right: 15px; padding-left: 0; border-right: 5px solid #eeeeee; border-left: 0; text-align: right }
.blockquote-reverse footer::before,blockquote.pull-right footer::before,.blockquote-reverse small::before,blockquote.pull-right small::before,.blockquote-reverse .small::before,blockquote.pull-right .small::before { content: "" }
.blockquote-reverse footer::after,blockquote.pull-right footer::after,.blockquote-reverse small::after,blockquote.pull-right small::after,.blockquote-reverse .small::after,blockquote.pull-right .small::after { content: "?—" }
address { margin-bottom: 18px; font-style: normal; line-height: 1.42857143 }
code,kbd,pre,samp { font-family: monospace }
code { padding: 2px 4px; font-size: 90%; color: #c7254e; background-color: #f9f2f4 }
kbd { padding: 2px 4px; font-size: 90%; color: #888; background-color: transparent }
kbd kbd { padding: 0; font-size: 100%; font-weight: bold }
pre { display: block; padding: 8.5px; margin: 0 0 9px; font-size: 12px; line-height: 1.42857143; color: #333333; background-color: #f5f5f5; border: 1px solid #ccc }
pre code { padding: 0; font-size: inherit; color: inherit; white-space: pre-wrap; background-color: transparent }
.pre-scrollable { max-height: 340px }
.container { margin-right: auto; margin-left: auto; padding-left: 0px; padding-right: 0px }
.container-fluid { margin-right: auto; margin-left: auto; padding-left: 0px; padding-right: 0px }
.row { margin-left: 0px; margin-right: 0px }
.col-xs-1,.col-sm-1,.col-md-1,.col-lg-1,.col-xs-2,.col-sm-2,.col-md-2,.col-lg-2,.col-xs-3,.col-sm-3,.col-md-3,.col-lg-3,.col-xs-4,.col-sm-4,.col-md-4,.col-lg-4,.col-xs-5,.col-sm-5,.col-md-5,.col-lg-5,.col-xs-6,.col-sm-6,.col-md-6,.col-lg-6,.col-xs-7,.col-sm-7,.col-md-7,.col-lg-7,.col-xs-8,.col-sm-8,.col-md-8,.col-lg-8,.col-xs-9,.col-sm-9,.col-md-9,.col-lg-9,.col-xs-10,.col-sm-10,.col-md-10,.col-lg-10,.col-xs-11,.col-sm-11,.col-md-11,.col-lg-11,.col-xs-12,.col-sm-12,.col-md-12,.col-lg-12 { position: relative; min-height: 1px; padding-left: 0px; padding-right: 0px }
.col-xs-1,.col-xs-2,.col-xs-3,.col-xs-4,.col-xs-5,.col-xs-6,.col-xs-7,.col-xs-8,.col-xs-9,.col-xs-10,.col-xs-11,.col-xs-12 { float: left }
.col-xs-12 { width: 100% }
.col-xs-11 { width: 91.66666667% }
.col-xs-10 { width: 83.33333333% }
.col-xs-9 { width: 75% }
.col-xs-8 { width: 66.66666667% }
.col-xs-7 { width: 58.33333333% }
.col-xs-6 { width: 50% }
.col-xs-5 { width: 41.66666667% }
.col-xs-4 { width: 33.33333333% }
.col-xs-3 { width: 25% }
.col-xs-2 { width: 16.66666667% }
.col-xs-1 { width: 8.33333333% }
.col-xs-pull-12 { right: 100% }
.col-xs-pull-11 { right: 91.66666667% }
.col-xs-pull-10 { right: 83.33333333% }
.col-xs-pull-9 { right: 75% }
.col-xs-pull-8 { right: 66.66666667% }
.col-xs-pull-7 { right: 58.33333333% }
.col-xs-pull-6 { right: 50% }
.col-xs-pull-5 { right: 41.66666667% }
.col-xs-pull-4 { right: 33.33333333% }
.col-xs-pull-3 { right: 25% }
.col-xs-pull-2 { right: 16.66666667% }
.col-xs-pull-1 { right: 8.33333333% }
.col-xs-pull-0 { right: auto }
.col-xs-push-12 { left: 100% }
.col-xs-push-11 { left: 91.66666667% }
.col-xs-push-10 { left: 83.33333333% }
.col-xs-push-9 { left: 75% }
.col-xs-push-8 { left: 66.66666667% }
.col-xs-push-7 { left: 58.33333333% }
.col-xs-push-6 { left: 50% }
.col-xs-push-5 { left: 41.66666667% }
.col-xs-push-4 { left: 33.33333333% }
.col-xs-push-3 { left: 25% }
.col-xs-push-2 { left: 16.66666667% }
.col-xs-push-1 { left: 8.33333333% }
.col-xs-push-0 { left: auto }
.col-xs-offset-12 { margin-left: 100% }
.col-xs-offset-11 { margin-left: 91.66666667% }
.col-xs-offset-10 { margin-left: 83.33333333% }
.col-xs-offset-9 { margin-left: 75% }
.col-xs-offset-8 { margin-left: 66.66666667% }
.col-xs-offset-7 { margin-left: 58.33333333% }
.col-xs-offset-6 { margin-left: 50% }
.col-xs-offset-5 { margin-left: 41.66666667% }
.col-xs-offset-4 { margin-left: 33.33333333% }
.col-xs-offset-3 { margin-left: 25% }
.col-xs-offset-2 { margin-left: 16.66666667% }
.col-xs-offset-1 { margin-left: 8.33333333% }
.col-xs-offset-0 { margin-left: 0% }
table { background-color: transparent }
caption { padding-top: 8px; padding-bottom: 8px; color: #777777; text-align: left }
th { text-align: left }
.table { width: 100%; max-width: 100%; margin-bottom: 18px }
.table>thead>tr>th,.table>tbody>tr>th,.table>tfoot>tr>th,.table>thead>tr>td,.table>tbody>tr>td,.table>tfoot>tr>td { padding: 8px; line-height: 1.42857143; vertical-align: top; border-top: 1px solid #ddd }
.table>thead>tr>th { vertical-align: bottom; border-bottom: 2px solid #ddd }
.table>caption+thead>tr:first-child>th,.table>colgroup+thead>tr:first-child>th,.table>thead:first-child>tr:first-child>th,.table>caption+thead>tr:first-child>td,.table>colgroup+thead>tr:first-child>td,.table>thead:first-child>tr:first-child>td { border-top: 0 }
.table>tbody+tbody { border-top: 2px solid #ddd }
.table .table { background-color: #fff }
.table-condensed>thead>tr>th,.table-condensed>tbody>tr>th,.table-condensed>tfoot>tr>th,.table-condensed>thead>tr>td,.table-condensed>tbody>tr>td,.table-condensed>tfoot>tr>td { padding: 5px }
.table-bordered { border: 1px solid #ddd }
.table-bordered>thead>tr>th,.table-bordered>tbody>tr>th,.table-bordered>tfoot>tr>th,.table-bordered>thead>tr>td,.table-bordered>tbody>tr>td,.table-bordered>tfoot>tr>td { border: 1px solid #ddd }
.table-bordered>thead>tr>th,.table-bordered>thead>tr>td { border-bottom-width: 2px }
.table-striped>tbody>tr:nth-of-type(2n+1) { background-color: #f9f9f9 }
.table-hover>tbody>tr:hover { background-color: #f5f5f5 }
table col[class*="col-"] { position: static; float: none; display: table-column }
table td[class*="col-"],table th[class*="col-"] { position: static; float: none; display: table-cell }
.table>thead>tr>td.active,.table>tbody>tr>td.active,.table>tfoot>tr>td.active,.table>thead>tr>th.active,.table>tbody>tr>th.active,.table>tfoot>tr>th.active,.table>thead>tr.active>td,.table>tbody>tr.active>td,.table>tfoot>tr.active>td,.table>thead>tr.active>th,.table>tbody>tr.active>th,.table>tfoot>tr.active>th { background-color: #f5f5f5 }
.table-hover>tbody>tr>td.active:hover,.table-hover>tbody>tr>th.active:hover,.table-hover>tbody>tr.active:hover>td,.table-hover>tbody>tr:hover>.active,.table-hover>tbody>tr.active:hover>th { background-color: #e8e8e8 }
.table>thead>tr>td.success,.table>tbody>tr>td.success,.table>tfoot>tr>td.success,.table>thead>tr>th.success,.table>tbody>tr>th.success,.table>tfoot>tr>th.success,.table>thead>tr.success>td,.table>tbody>tr.success>td,.table>tfoot>tr.success>td,.table>thead>tr.success>th,.table>tbody>tr.success>th,.table>tfoot>tr.success>th { background-color: #dff0d8 }
.table-hover>tbody>tr>td.success:hover,.table-hover>tbody>tr>th.success:hover,.table-hover>tbody>tr.success:hover>td,.table-hover>tbody>tr:hover>.success,.table-hover>tbody>tr.success:hover>th { background-color: #d0e9c6 }
.table>thead>tr>td.info,.table>tbody>tr>td.info,.table>tfoot>tr>td.info,.table>thead>tr>th.info,.table>tbody>tr>th.info,.table>tfoot>tr>th.info,.table>thead>tr.info>td,.table>tbody>tr.info>td,.table>tfoot>tr.info>td,.table>thead>tr.info>th,.table>tbody>tr.info>th,.table>tfoot>tr.info>th { background-color: #d9edf7 }
.table-hover>tbody>tr>td.info:hover,.table-hover>tbody>tr>th.info:hover,.table-hover>tbody>tr.info:hover>td,.table-hover>tbody>tr:hover>.info,.table-hover>tbody>tr.info:hover>th { background-color: #c4e3f3 }
.table>thead>tr>td.warning,.table>tbody>tr>td.warning,.table>tfoot>tr>td.warning,.table>thead>tr>th.warning,.table>tbody>tr>th.warning,.table>tfoot>tr>th.warning,.table>thead>tr.warning>td,.table>tbody>tr.warning>td,.table>tfoot>tr.warning>td,.table>thead>tr.warning>th,.table>tbody>tr.warning>th,.table>tfoot>tr.warning>th { background-color: #fcf8e3 }
.table-hover>tbody>tr>td.warning:hover,.table-hover>tbody>tr>th.warning:hover,.table-hover>tbody>tr.warning:hover>td,.table-hover>tbody>tr:hover>.warning,.table-hover>tbody>tr.warning:hover>th { background-color: #faf2cc }
.table>thead>tr>td.danger,.table>tbody>tr>td.danger,.table>tfoot>tr>td.danger,.table>thead>tr>th.danger,.table>tbody>tr>th.danger,.table>tfoot>tr>th.danger,.table>thead>tr.danger>td,.table>tbody>tr.danger>td,.table>tfoot>tr.danger>td,.table>thead>tr.danger>th,.table>tbody>tr.danger>th,.table>tfoot>tr.danger>th { background-color: #f2dede }
.table-hover>tbody>tr>td.danger:hover,.table-hover>tbody>tr>th.danger:hover,.table-hover>tbody>tr.danger:hover>td,.table-hover>tbody>tr:hover>.danger,.table-hover>tbody>tr.danger:hover>th { background-color: #ebcccc }
.table-responsive { min-height: 0.01% }
fieldset { padding: 0; margin: 0; border: 0; min-width: 0 }
legend { display: block; width: 100%; padding: 0; margin-bottom: 18px; font-size: 19.5px; line-height: inherit; color: #333333; border: 0; border-bottom: 1px solid #e5e5e5 }
label { display: inline-block; max-width: 100%; margin-bottom: 5px; font-weight: bold }
input[type="search"] { }
input[type="radio"],input[type="checkbox"] { margin: 4px 0 0; margin-top: 1px ; line-height: normal }
input[type="file"] { display: block }
input[type="range"] { display: block; width: 100% }
select[multiple],select[size] { height: auto }
input[type="file"]:focus,input[type="radio"]:focus,input[type="checkbox"]:focus { outline: 5px auto -webkit-focus-ring-color }
output { display: block; padding-top: 7px; font-size: 13px; line-height: 1.42857143; color: #555555 }
.form-control { display: block; width: 100%; height: 32px; padding: 6px 12px; font-size: 13px; line-height: 1.42857143; color: #555555; background-color: #fff; background-image: none; border: 1px solid #ccc }
.form-control:focus { border-color: #66afe9; outline: 0 }
.form-control::-moz-placeholder { color: #999; opacity: 1 }
.form-control:-ms-input-placeholder { color: #999 }
.form-control::-webkit-input-placeholder { color: #999 }
.form-control::-ms-expand { border: 0; background-color: transparent }
.form-control[disabled],.form-control[readonly],fieldset[disabled] .form-control { background-color: #eeeeee; opacity: 1 }
.form-control[disabled],fieldset[disabled] .form-control { cursor: not-allowed }
textarea.form-control { height: auto }
input[type="search"] { }
.form-group { margin-bottom: 15px }
.radio,.checkbox { position: relative; display: block; margin-top: 10px; margin-bottom: 10px }
.radio label,.checkbox label { min-height: 18px; padding-left: 20px; margin-bottom: 0; font-weight: normal; cursor: pointer }
.radio input[type="radio"],.radio-inline input[type="radio"],.checkbox input[type="checkbox"],.checkbox-inline input[type="checkbox"] { position: absolute; margin-left: -20px; margin-top: 4px }
.radio+.radio,.checkbox+.checkbox { margin-top: -5px }
.radio-inline,.checkbox-inline { position: relative; display: inline-block; padding-left: 20px; margin-bottom: 0; vertical-align: middle; font-weight: normal; cursor: pointer }
.radio-inline+.radio-inline,.checkbox-inline+.checkbox-inline { margin-top: 0; margin-left: 10px }
input[type="radio"][disabled],input[type="checkbox"][disabled],input[type="radio"].disabled,input[type="checkbox"].disabled,fieldset[disabled] input[type="radio"],fieldset[disabled] input[type="checkbox"] { cursor: not-allowed }
.radio-inline.disabled,.checkbox-inline.disabled,fieldset[disabled] .radio-inline,fieldset[disabled] .checkbox-inline { cursor: not-allowed }
.radio.disabled label,.checkbox.disabled label,fieldset[disabled] .radio label,fieldset[disabled] .checkbox label { cursor: not-allowed }
.form-control-static { padding-top: 7px; padding-bottom: 7px; margin-bottom: 0; min-height: 31px }
.form-control-static.input-lg,.form-control-static.input-sm { padding-left: 0; padding-right: 0 }
.input-sm { height: 30px; padding: 5px 10px; font-size: 12px; line-height: 1.5 }
select.input-sm { height: 30px; line-height: 30px }
textarea.input-sm,select[multiple].input-sm { height: auto }
.form-group-sm .form-control { height: 30px; padding: 5px 10px; font-size: 12px; line-height: 1.5 }
.form-group-sm select.form-control { height: 30px; line-height: 30px }
.form-group-sm textarea.form-control,.form-group-sm select[multiple].form-control { height: auto }
.form-group-sm .form-control-static { height: 30px; min-height: 30px; padding: 6px 10px; font-size: 12px; line-height: 1.5 }
.input-lg { height: 45px; padding: 10px 16px; font-size: 17px; line-height: 1.3333333 }
select.input-lg { height: 45px; line-height: 45px }
textarea.input-lg,select[multiple].input-lg { height: auto }
.form-group-lg .form-control { height: 45px; padding: 10px 16px; font-size: 17px; line-height: 1.3333333 }
.form-group-lg select.form-control { height: 45px; line-height: 45px }
.form-group-lg textarea.form-control,.form-group-lg select[multiple].form-control { height: auto }
.form-group-lg .form-control-static { height: 45px; min-height: 35px; padding: 11px 16px; font-size: 17px; line-height: 1.3333333 }
.has-feedback { position: relative }
.has-feedback .form-control { padding-right: 40px }
.form-control-feedback { position: absolute; top: 0; right: 0; z-index: 2; display: block; width: 32px; height: 32px; line-height: 32px; text-align: center }
.input-lg+.form-control-feedback,.input-group-lg+.form-control-feedback,.form-group-lg .form-control+.form-control-feedback { width: 45px; height: 45px; line-height: 45px }
.input-sm+.form-control-feedback,.input-group-sm+.form-control-feedback,.form-group-sm .form-control+.form-control-feedback { width: 30px; height: 30px; line-height: 30px }
.has-success .help-block,.has-success .control-label,.has-success .radio,.has-success .checkbox,.has-success .radio-inline,.has-success .checkbox-inline,.has-success.radio label,.has-success.checkbox label,.has-success.radio-inline label,.has-success.checkbox-inline label { color: #3c763d }
.has-success .form-control { border-color: #3c763d }
.has-success .form-control:focus { border-color: #2b542c }
.has-success .input-group-addon { color: #3c763d; border-color: #3c763d; background-color: #dff0d8 }
.has-success .form-control-feedback { color: #3c763d }
.has-warning .help-block,.has-warning .control-label,.has-warning .radio,.has-warning .checkbox,.has-warning .radio-inline,.has-warning .checkbox-inline,.has-warning.radio label,.has-warning.checkbox label,.has-warning.radio-inline label,.has-warning.checkbox-inline label { color: #8a6d3b }
.has-warning .form-control { border-color: #8a6d3b }
.has-warning .form-control:focus { border-color: #66512c }
.has-warning .input-group-addon { color: #8a6d3b; border-color: #8a6d3b; background-color: #fcf8e3 }
.has-warning .form-control-feedback { color: #8a6d3b }
.has-error .help-block,.has-error .control-label,.has-error .radio,.has-error .checkbox,.has-error .radio-inline,.has-error .checkbox-inline,.has-error.radio label,.has-error.checkbox label,.has-error.radio-inline label,.has-error.checkbox-inline label { color: #a94442 }
.has-error .form-control { border-color: #a94442 }
.has-error .form-control:focus { border-color: #843534 }
.has-error .input-group-addon { color: #a94442; border-color: #a94442; background-color: #f2dede }
.has-error .form-control-feedback { color: #a94442 }
.has-feedback label~.form-control-feedback { top: 23px }
.has-feedback label.sr-only~.form-control-feedback { top: 0 }
.help-block { display: block; margin-top: 5px; margin-bottom: 10px; color: #404040 }
.form-horizontal .radio,.form-horizontal .checkbox,.form-horizontal .radio-inline,.form-horizontal .checkbox-inline { margin-top: 0; margin-bottom: 0; padding-top: 7px }
.form-horizontal .radio,.form-horizontal .checkbox { min-height: 25px }
.form-horizontal .form-group { margin-left: 0px; margin-right: 0px }
.form-horizontal .has-feedback .form-control-feedback { right: 0px }
.btn { display: inline-block; margin-bottom: 0; font-weight: normal; text-align: center; vertical-align: middle; cursor: pointer; background-image: none; border: 1px solid transparent; white-space: nowrap; padding: 6px 12px; font-size: 13px; line-height: 1.42857143 }
.btn:focus,.btn:active:focus,.btn.active:focus,.btn.focus,.btn:active.focus,.btn.active.focus { outline: 5px auto -webkit-focus-ring-color }
.btn:hover,.btn:focus,.btn.focus { color: #333; text-decoration: none }
.btn:active,.btn.active { outline: 0; background-image: none }
.btn.disabled,.btn[disabled],fieldset[disabled] .btn { cursor: not-allowed; opacity: 0.65 }
a.btn.disabled,fieldset[disabled] a.btn { }
.btn-default { color: #333; background-color: #fff; border-color: #ccc }
.btn-default:focus,.btn-default.focus { color: #333; background-color: #e6e6e6; border-color: #8c8c8c }
.btn-default:hover { color: #333; background-color: #e6e6e6; border-color: #adadad }
.btn-default:active,.btn-default.active,.open>.dropdown-toggle.btn-default { color: #333; background-color: #e6e6e6; border-color: #adadad }
.btn-default:active:hover,.btn-default.active:hover,.open>.dropdown-toggle.btn-default:hover,.btn-default:active:focus,.btn-default.active:focus,.open>.dropdown-toggle.btn-default:focus,.btn-default:active.focus,.btn-default.active.focus,.open>.dropdown-toggle.btn-default.focus { color: #333; background-color: #d4d4d4; border-color: #8c8c8c }
.btn-default:active,.btn-default.active,.open>.dropdown-toggle.btn-default { background-image: none }
.btn-default.disabled:hover,.btn-default[disabled]:hover,fieldset[disabled] .btn-default:hover,.btn-default.disabled:focus,.btn-default[disabled]:focus,fieldset[disabled] .btn-default:focus,.btn-default.disabled.focus,.btn-default[disabled].focus,fieldset[disabled] .btn-default.focus { background-color: #fff; border-color: #ccc }
.btn-default .badge { color: #fff; background-color: #333 }
.btn-primary { color: #fff; background-color: #337ab7; border-color: #2e6da4 }
.btn-primary:focus,.btn-primary.focus { color: #fff; background-color: #286090; border-color: #122b40 }
.btn-primary:hover { color: #fff; background-color: #286090; border-color: #204d74 }
.btn-primary:active,.btn-primary.active,.open>.dropdown-toggle.btn-primary { color: #fff; background-color: #286090; border-color: #204d74 }
.btn-primary:active:hover,.btn-primary.active:hover,.open>.dropdown-toggle.btn-primary:hover,.btn-primary:active:focus,.btn-primary.active:focus,.open>.dropdown-toggle.btn-primary:focus,.btn-primary:active.focus,.btn-primary.active.focus,.open>.dropdown-toggle.btn-primary.focus { color: #fff; background-color: #204d74; border-color: #122b40 }
.btn-primary:active,.btn-primary.active,.open>.dropdown-toggle.btn-primary { background-image: none }
.btn-primary.disabled:hover,.btn-primary[disabled]:hover,fieldset[disabled] .btn-primary:hover,.btn-primary.disabled:focus,.btn-primary[disabled]:focus,fieldset[disabled] .btn-primary:focus,.btn-primary.disabled.focus,.btn-primary[disabled].focus,fieldset[disabled] .btn-primary.focus { background-color: #337ab7; border-color: #2e6da4 }
.btn-primary .badge { color: #337ab7; background-color: #fff }
.btn-success { color: #fff; background-color: #5cb85c; border-color: #4cae4c }
.btn-success:focus,.btn-success.focus { color: #fff; background-color: #449d44; border-color: #255625 }
.btn-success:hover { color: #fff; background-color: #449d44; border-color: #398439 }
.btn-success:active,.btn-success.active,.open>.dropdown-toggle.btn-success { color: #fff; background-color: #449d44; border-color: #398439 }
.btn-success:active:hover,.btn-success.active:hover,.open>.dropdown-toggle.btn-success:hover,.btn-success:active:focus,.btn-success.active:focus,.open>.dropdown-toggle.btn-success:focus,.btn-success:active.focus,.btn-success.active.focus,.open>.dropdown-toggle.btn-success.focus { color: #fff; background-color: #398439; border-color: #255625 }
.btn-success:active,.btn-success.active,.open>.dropdown-toggle.btn-success { background-image: none }
.btn-success.disabled:hover,.btn-success[disabled]:hover,fieldset[disabled] .btn-success:hover,.btn-success.disabled:focus,.btn-success[disabled]:focus,fieldset[disabled] .btn-success:focus,.btn-success.disabled.focus,.btn-success[disabled].focus,fieldset[disabled] .btn-success.focus { background-color: #5cb85c; border-color: #4cae4c }
.btn-success .badge { color: #5cb85c; background-color: #fff }
.btn-info { color: #fff; background-color: #5bc0de; border-color: #46b8da }
.btn-info:focus,.btn-info.focus { color: #fff; background-color: #31b0d5; border-color: #1b6d85 }
.btn-info:hover { color: #fff; background-color: #31b0d5; border-color: #269abc }
.btn-info:active,.btn-info.active,.open>.dropdown-toggle.btn-info { color: #fff; background-color: #31b0d5; border-color: #269abc }
.btn-info:active:hover,.btn-info.active:hover,.open>.dropdown-toggle.btn-info:hover,.btn-info:active:focus,.btn-info.active:focus,.open>.dropdown-toggle.btn-info:focus,.btn-info:active.focus,.btn-info.active.focus,.open>.dropdown-toggle.btn-info.focus { color: #fff; background-color: #269abc; border-color: #1b6d85 }
.btn-info:active,.btn-info.active,.open>.dropdown-toggle.btn-info { background-image: none }
.btn-info.disabled:hover,.btn-info[disabled]:hover,fieldset[disabled] .btn-info:hover,.btn-info.disabled:focus,.btn-info[disabled]:focus,fieldset[disabled] .btn-info:focus,.btn-info.disabled.focus,.btn-info[disabled].focus,fieldset[disabled] .btn-info.focus { background-color: #5bc0de; border-color: #46b8da }
.btn-info .badge { color: #5bc0de; background-color: #fff }
.btn-warning { color: #fff; background-color: #f0ad4e; border-color: #eea236 }
.btn-warning:focus,.btn-warning.focus { color: #fff; background-color: #ec971f; border-color: #985f0d }
.btn-warning:hover { color: #fff; background-color: #ec971f; border-color: #d58512 }
.btn-warning:active,.btn-warning.active,.open>.dropdown-toggle.btn-warning { color: #fff; background-color: #ec971f; border-color: #d58512 }
.btn-warning:active:hover,.btn-warning.active:hover,.open>.dropdown-toggle.btn-warning:hover,.btn-warning:active:focus,.btn-warning.active:focus,.open>.dropdown-toggle.btn-warning:focus,.btn-warning:active.focus,.btn-warning.active.focus,.open>.dropdown-toggle.btn-warning.focus { color: #fff; background-color: #d58512; border-color: #985f0d }
.btn-warning:active,.btn-warning.active,.open>.dropdown-toggle.btn-warning { background-image: none }
.btn-warning.disabled:hover,.btn-warning[disabled]:hover,fieldset[disabled] .btn-warning:hover,.btn-warning.disabled:focus,.btn-warning[disabled]:focus,fieldset[disabled] .btn-warning:focus,.btn-warning.disabled.focus,.btn-warning[disabled].focus,fieldset[disabled] .btn-warning.focus { background-color: #f0ad4e; border-color: #eea236 }
.btn-warning .badge { color: #f0ad4e; background-color: #fff }
.btn-danger { color: #fff; background-color: #d9534f; border-color: #d43f3a }
.btn-danger:focus,.btn-danger.focus { color: #fff; background-color: #c9302c; border-color: #761c19 }
.btn-danger:hover { color: #fff; background-color: #c9302c; border-color: #ac2925 }
.btn-danger:active,.btn-danger.active,.open>.dropdown-toggle.btn-danger { color: #fff; background-color: #c9302c; border-color: #ac2925 }
.btn-danger:active:hover,.btn-danger.active:hover,.open>.dropdown-toggle.btn-danger:hover,.btn-danger:active:focus,.btn-danger.active:focus,.open>.dropdown-toggle.btn-danger:focus,.btn-danger:active.focus,.btn-danger.active.focus,.open>.dropdown-toggle.btn-danger.focus { color: #fff; background-color: #ac2925; border-color: #761c19 }
.btn-danger:active,.btn-danger.active,.open>.dropdown-toggle.btn-danger { background-image: none }
.btn-danger.disabled:hover,.btn-danger[disabled]:hover,fieldset[disabled] .btn-danger:hover,.btn-danger.disabled:focus,.btn-danger[disabled]:focus,fieldset[disabled] .btn-danger:focus,.btn-danger.disabled.focus,.btn-danger[disabled].focus,fieldset[disabled] .btn-danger.focus { background-color: #d9534f; border-color: #d43f3a }
.btn-danger .badge { color: #d9534f; background-color: #fff }
.btn-link { color: #337ab7; font-weight: normal }
.btn-link,.btn-link:active,.btn-link.active,.btn-link[disabled],fieldset[disabled] .btn-link { background-color: transparent }
.btn-link,.btn-link:hover,.btn-link:focus,.btn-link:active { border-color: transparent }
.btn-link:hover,.btn-link:focus { color: #23527c; text-decoration: underline; background-color: transparent }
.btn-link[disabled]:hover,fieldset[disabled] .btn-link:hover,.btn-link[disabled]:focus,fieldset[disabled] .btn-link:focus { color: #777777; text-decoration: none }
.btn-lg,.btn-group-lg>.btn { padding: 10px 16px; font-size: 17px; line-height: 1.3333333 }
.btn-sm,.btn-group-sm>.btn { padding: 5px 10px; font-size: 12px; line-height: 1.5 }
.btn-xs,.btn-group-xs>.btn { padding: 1px 5px; font-size: 12px; line-height: 1.5 }
.btn-block { display: block; width: 100% }
.btn-block+.btn-block { margin-top: 5px }
input[type="submit"].btn-block,input[type="reset"].btn-block,input[type="button"].btn-block { width: 100% }
.fade { opacity: 0 }
.fade.in { opacity: 1 }
.collapse { display: none }
.collapse.in { display: block }
tr.collapse.in { display: table-row }
tbody.collapse.in { display: table-row-group }
.collapsing { position: relative; height: 0; overflow: hidden }
.caret { display: inline-block; width: 0; height: 0; margin-left: 2px; vertical-align: middle; border-top: 4px solid ; border-right: 4px solid transparent; border-left: 4px solid transparent }
.dropup,.dropdown { position: relative }
.dropdown-toggle:focus { outline: 0 }
.dropdown-menu { position: absolute; top: 100%; left: 0; z-index: 1000; display: none; float: left; min-width: 160px; padding: 5px 0; margin: 2px 0 0; list-style: none; font-size: 13px; text-align: left; background-color: #fff; border: 1px solid rgba(0, 0, 0, 0.15) }
.dropdown-menu.pull-right { right: 0; left: auto }
.dropdown-menu .divider { height: 1px; margin: 8px 0; overflow: hidden; background-color: #e5e5e5 }
.dropdown-menu>li>a { display: block; padding: 3px 20px; clear: both; font-weight: normal; line-height: 1.42857143; color: #333333; white-space: nowrap }
.dropdown-menu>li>a:hover,.dropdown-menu>li>a:focus { text-decoration: none; color: #262626; background-color: #f5f5f5 }
.dropdown-menu>.active>a,.dropdown-menu>.active>a:hover,.dropdown-menu>.active>a:focus { color: #fff; text-decoration: none; outline: 0; background-color: #337ab7 }
.dropdown-menu>.disabled>a,.dropdown-menu>.disabled>a:hover,.dropdown-menu>.disabled>a:focus { color: #777777 }
.dropdown-menu>.disabled>a:hover,.dropdown-menu>.disabled>a:focus { text-decoration: none; background-color: transparent; background-image: none; cursor: not-allowed }
.open>.dropdown-menu { display: block }
.open>a { outline: 0 }
.dropdown-menu-right { left: auto; right: 0 }
.dropdown-menu-left { left: 0; right: auto }
.dropdown-header { display: block; padding: 3px 20px; font-size: 12px; line-height: 1.42857143; color: #777777; white-space: nowrap }
.dropdown-backdrop { position: fixed; left: 0; right: 0; bottom: 0; top: 0; z-index: 990 }
.pull-right>.dropdown-menu { right: 0; left: auto }
.dropup .caret,.navbar-fixed-bottom .dropdown .caret { border-top: 0; border-bottom: 4px solid ; content: "" }
.dropup .dropdown-menu,.navbar-fixed-bottom .dropdown .dropdown-menu { top: auto; bottom: 100%; margin-bottom: 2px }
.btn-group,.btn-group-vertical { position: relative; display: inline-block; vertical-align: middle }
.btn-group>.btn,.btn-group-vertical>.btn { position: relative; float: left }
.btn-group>.btn:hover,.btn-group-vertical>.btn:hover,.btn-group>.btn:focus,.btn-group-vertical>.btn:focus,.btn-group>.btn:active,.btn-group-vertical>.btn:active,.btn-group>.btn.active,.btn-group-vertical>.btn.active { z-index: 2 }
.btn-group .btn+.btn,.btn-group .btn+.btn-group,.btn-group .btn-group+.btn,.btn-group .btn-group+.btn-group { margin-left: -1px }
.btn-toolbar { margin-left: -5px }
.btn-toolbar .btn,.btn-toolbar .btn-group,.btn-toolbar .input-group { float: left }
.btn-toolbar>.btn,.btn-toolbar>.btn-group,.btn-toolbar>.input-group { margin-left: 5px }
.btn-group>.btn:not(:first-child):not(:last-child):not(.dropdown-toggle) { }
.btn-group>.btn:first-child { margin-left: 0 }
.btn-group>.btn:first-child:not(:last-child):not(.dropdown-toggle) { }
.btn-group>.btn:last-child:not(:first-child),.btn-group>.dropdown-toggle:not(:first-child) { }
.btn-group>.btn-group { float: left }
.btn-group>.btn-group:not(:first-child):not(:last-child)>.btn { }
.btn-group>.btn-group:first-child:not(:last-child)>.btn:last-child,.btn-group>.btn-group:first-child:not(:last-child)>.dropdown-toggle { }
.btn-group>.btn-group:last-child:not(:first-child)>.btn:first-child { }
.btn-group .dropdown-toggle:active,.btn-group.open .dropdown-toggle { outline: 0 }
.btn-group>.btn+.dropdown-toggle { padding-left: 8px; padding-right: 8px }
.btn-group>.btn-lg+.dropdown-toggle { padding-left: 12px; padding-right: 12px }
.btn-group.open .dropdown-toggle { }
.btn-group.open .dropdown-toggle.btn-link { }
.btn .caret { margin-left: 0 }
.btn-lg .caret { border-width: 5px 5px 0; border-bottom-width: 0 }
.dropup .btn-lg .caret { border-width: 0 5px 5px }
.btn-group-vertical>.btn,.btn-group-vertical>.btn-group,.btn-group-vertical>.btn-group>.btn { display: block; float: none; width: 100%; max-width: 100% }
.btn-group-vertical>.btn-group>.btn { float: none }
.btn-group-vertical>.btn+.btn,.btn-group-vertical>.btn+.btn-group,.btn-group-vertical>.btn-group+.btn,.btn-group-vertical>.btn-group+.btn-group { margin-top: -1px; margin-left: 0 }
.btn-group-vertical>.btn:not(:first-child):not(:last-child) { }
.btn-group-vertical>.btn:first-child:not(:last-child) { }
.btn-group-vertical>.btn:last-child:not(:first-child) { }
.btn-group-vertical>.btn-group:not(:first-child):not(:last-child)>.btn { }
.btn-group-vertical>.btn-group:first-child:not(:last-child)>.btn:last-child,.btn-group-vertical>.btn-group:first-child:not(:last-child)>.dropdown-toggle { }
.btn-group-vertical>.btn-group:last-child:not(:first-child)>.btn:first-child { }
.btn-group-justified { display: table; width: 100%; table-layout: fixed; border-collapse: separate }
.btn-group-justified>.btn,.btn-group-justified>.btn-group { float: none; display: table-cell; width: 1% }
.btn-group-justified>.btn-group .btn { width: 100% }
.btn-group-justified>.btn-group .dropdown-menu { left: auto }
[data-toggle="buttons"]>.btn input[type="radio"],[data-toggle="buttons"]>.btn-group>.btn input[type="radio"],[data-toggle="buttons"]>.btn input[type="checkbox"],[data-toggle="buttons"]>.btn-group>.btn input[type="checkbox"] { position: absolute; clip: rect(0, 0, 0, 0) }
.input-group { position: relative; display: table; border-collapse: separate }
.input-group[class*="col-"] { float: none; padding-left: 0; padding-right: 0 }
.input-group .form-control { position: relative; z-index: 2; float: left; width: 100%; margin-bottom: 0 }
.input-group .form-control:focus { z-index: 3 }
.input-group-lg>.form-control,.input-group-lg>.input-group-addon,.input-group-lg>.input-group-btn>.btn { height: 45px; padding: 10px 16px; font-size: 17px; line-height: 1.3333333 }
select.input-group-lg>.form-control,select.input-group-lg>.input-group-addon,select.input-group-lg>.input-group-btn>.btn { height: 45px; line-height: 45px }
textarea.input-group-lg>.form-control,textarea.input-group-lg>.input-group-addon,textarea.input-group-lg>.input-group-btn>.btn,select[multiple].input-group-lg>.form-control,select[multiple].input-group-lg>.input-group-addon,select[multiple].input-group-lg>.input-group-btn>.btn { height: auto }
.input-group-sm>.form-control,.input-group-sm>.input-group-addon,.input-group-sm>.input-group-btn>.btn { height: 30px; padding: 5px 10px; font-size: 12px; line-height: 1.5 }
select.input-group-sm>.form-control,select.input-group-sm>.input-group-addon,select.input-group-sm>.input-group-btn>.btn { height: 30px; line-height: 30px }
textarea.input-group-sm>.form-control,textarea.input-group-sm>.input-group-addon,textarea.input-group-sm>.input-group-btn>.btn,select[multiple].input-group-sm>.form-control,select[multiple].input-group-sm>.input-group-addon,select[multiple].input-group-sm>.input-group-btn>.btn { height: auto }
.input-group-addon,.input-group-btn,.input-group .form-control { display: table-cell }
.input-group-addon:not(:first-child):not(:last-child),.input-group-btn:not(:first-child):not(:last-child),.input-group .form-control:not(:first-child):not(:last-child) { }
.input-group-addon,.input-group-btn { width: 1%; white-space: nowrap; vertical-align: middle }
.input-group-addon { padding: 6px 12px; font-size: 13px; font-weight: normal; line-height: 1; color: #555555; text-align: center; background-color: #eeeeee; border: 1px solid #ccc }
.input-group-addon.input-sm { padding: 5px 10px; font-size: 12px }
.input-group-addon.input-lg { padding: 10px 16px; font-size: 17px }
.input-group-addon input[type="radio"],.input-group-addon input[type="checkbox"] { margin-top: 0 }
.input-group .form-control:first-child,.input-group-addon:first-child,.input-group-btn:first-child>.btn,.input-group-btn:first-child>.btn-group>.btn,.input-group-btn:first-child>.dropdown-toggle,.input-group-btn:last-child>.btn:not(:last-child):not(.dropdown-toggle),.input-group-btn:last-child>.btn-group:not(:last-child)>.btn { }
.input-group-addon:first-child { border-right: 0 }
.input-group .form-control:last-child,.input-group-addon:last-child,.input-group-btn:last-child>.btn,.input-group-btn:last-child>.btn-group>.btn,.input-group-btn:last-child>.dropdown-toggle,.input-group-btn:first-child>.btn:not(:first-child),.input-group-btn:first-child>.btn-group:not(:first-child)>.btn { }
.input-group-addon:last-child { border-left: 0 }
.input-group-btn { position: relative; font-size: 0; white-space: nowrap }
.input-group-btn>.btn { position: relative }
.input-group-btn>.btn+.btn { margin-left: -1px }
.input-group-btn>.btn:hover,.input-group-btn>.btn:focus,.input-group-btn>.btn:active { z-index: 2 }
.input-group-btn:first-child>.btn,.input-group-btn:first-child>.btn-group { margin-right: -1px }
.input-group-btn:last-child>.btn,.input-group-btn:last-child>.btn-group { z-index: 2; margin-left: -1px }
.nav { margin-bottom: 0; padding-left: 0; list-style: none }
.nav>li { position: relative; display: block }
.nav>li>a { position: relative; display: block; padding: 10px 15px }
.nav>li>a:hover,.nav>li>a:focus { text-decoration: none; background-color: #eeeeee }
.nav>li.disabled>a { color: #777777 }
.nav>li.disabled>a:hover,.nav>li.disabled>a:focus { color: #777777; text-decoration: none; background-color: transparent; cursor: not-allowed }
.nav .open>a,.nav .open>a:hover,.nav .open>a:focus { background-color: #eeeeee; border-color: #337ab7 }
.nav .nav-divider { height: 1px; margin: 8px 0; overflow: hidden; background-color: #e5e5e5 }
.nav>li>a>img { max-width: none }
.nav-tabs { border-bottom: 1px solid #ddd }
.nav-tabs>li { float: left; margin-bottom: -1px }
.nav-tabs>li>a { margin-right: 2px; line-height: 1.42857143; border: 1px solid transparent }
.nav-tabs>li>a:hover { border-color: #eeeeee #eeeeee #ddd }
.nav-tabs>li.active>a,.nav-tabs>li.active>a:hover,.nav-tabs>li.active>a:focus { color: #555555; background-color: #fff; border: 1px solid #ddd; border-bottom-color: transparent; cursor: default }
.nav-tabs.nav-justified { width: 100%; border-bottom: 0 }
.nav-tabs.nav-justified>li { float: none }
.nav-tabs.nav-justified>li>a { text-align: center; margin-bottom: 5px }
.nav-tabs.nav-justified>.dropdown .dropdown-menu { top: auto; left: auto }
.nav-tabs.nav-justified>li>a { margin-right: 0 }
.nav-tabs.nav-justified>.active>a,.nav-tabs.nav-justified>.active>a:hover,.nav-tabs.nav-justified>.active>a:focus { border: 1px solid #ddd }
.nav-pills>li { float: left }
.nav-pills>li>a { }
.nav-pills>li+li { margin-left: 2px }
.nav-pills>li.active>a,.nav-pills>li.active>a:hover,.nav-pills>li.active>a:focus { color: #fff; background-color: #337ab7 }
.nav-stacked>li { float: none }
.nav-stacked>li+li { margin-top: 2px; margin-left: 0 }
.nav-justified { width: 100% }
.nav-justified>li { float: none }
.nav-justified>li>a { text-align: center; margin-bottom: 5px }
.nav-justified>.dropdown .dropdown-menu { top: auto; left: auto }
.nav-tabs-justified { border-bottom: 0 }
.nav-tabs-justified>li>a { margin-right: 0 }
.nav-tabs-justified>.active>a,.nav-tabs-justified>.active>a:hover,.nav-tabs-justified>.active>a:focus { border: 1px solid #ddd }
.tab-content>.tab-pane { display: none }
.tab-content>.active { display: block }
.nav-tabs .dropdown-menu { margin-top: -1px }
.navbar { position: relative; min-height: 30px; margin-bottom: 18px; border: 1px solid transparent }
.navbar-collapse { padding-right: 0px; padding-left: 0px; border-top: 1px solid transparent }
.navbar-collapse.in { }
.navbar-fixed-top .navbar-collapse,.navbar-fixed-bottom .navbar-collapse { max-height: 340px }
.container>.navbar-header,.container-fluid>.navbar-header,.container>.navbar-collapse,.container-fluid>.navbar-collapse { margin-right: 0px; margin-left: 0px }
.navbar-static-top { z-index: 1000; border-width: 0 0 1px }
.navbar-fixed-top,.navbar-fixed-bottom { position: fixed; right: 0; left: 0; z-index: 1030 }
.navbar-fixed-top { top: 0; border-width: 0 0 1px }
.navbar-fixed-bottom { bottom: 0; margin-bottom: 0; border-width: 1px 0 0 }
.navbar-brand { float: left; padding: 6px 0px; font-size: 17px; line-height: 18px; height: 30px }
.navbar-brand:hover,.navbar-brand:focus { text-decoration: none }
.navbar-brand>img { display: block }
.navbar-toggle { position: relative; float: right; margin-right: 0px; padding: 9px 10px; margin-top: -2px; margin-bottom: -2px; background-color: transparent; background-image: none; border: 1px solid transparent }
.navbar-toggle:focus { outline: 0 }
.navbar-toggle .icon-bar { display: block; width: 22px; height: 2px }
.navbar-toggle .icon-bar+.icon-bar { margin-top: 4px }
.navbar-nav { margin: 3px 0px }
.navbar-nav>li>a { padding-top: 10px; padding-bottom: 10px; line-height: 18px }
.navbar-form { margin-left: 0px; margin-right: 0px; padding: 10px 0px; border-top: 1px solid transparent; border-bottom: 1px solid transparent; margin-top: -1px; margin-bottom: -1px }
.navbar-nav>li>.dropdown-menu { margin-top: 0 }
.navbar-fixed-bottom .navbar-nav>li>.dropdown-menu { margin-bottom: 0 }
.navbar-btn { margin-top: -1px; margin-bottom: -1px }
.navbar-btn.btn-sm { margin-top: 0px; margin-bottom: 0px }
.navbar-btn.btn-xs { margin-top: 4px; margin-bottom: 4px }
.navbar-text { margin-top: 6px; margin-bottom: 6px }
.navbar-default { background-color: #f8f8f8; border-color: #e7e7e7 }
.navbar-default .navbar-brand { color: #777 }
.navbar-default .navbar-brand:hover,.navbar-default .navbar-brand:focus { color: #5e5e5e; background-color: transparent }
.navbar-default .navbar-text { color: #777 }
.navbar-default .navbar-nav>li>a { color: #777 }
.navbar-default .navbar-nav>li>a:hover,.navbar-default .navbar-nav>li>a:focus { color: #333; background-color: transparent }
.navbar-default .navbar-nav>.active>a,.navbar-default .navbar-nav>.active>a:hover,.navbar-default .navbar-nav>.active>a:focus { color: #555; background-color: #e7e7e7 }
.navbar-default .navbar-nav>.disabled>a,.navbar-default .navbar-nav>.disabled>a:hover,.navbar-default .navbar-nav>.disabled>a:focus { color: #ccc; background-color: transparent }
.navbar-default .navbar-toggle { border-color: #ddd }
.navbar-default .navbar-toggle:hover,.navbar-default .navbar-toggle:focus { background-color: #ddd }
.navbar-default .navbar-toggle .icon-bar { background-color: #888 }
.navbar-default .navbar-collapse,.navbar-default .navbar-form { border-color: #e7e7e7 }
.navbar-default .navbar-nav>.open>a,.navbar-default .navbar-nav>.open>a:hover,.navbar-default .navbar-nav>.open>a:focus { background-color: #e7e7e7; color: #555 }
.navbar-default .navbar-link { color: #777 }
.navbar-default .navbar-link:hover { color: #333 }
.navbar-default .btn-link { color: #777 }
.navbar-default .btn-link:hover,.navbar-default .btn-link:focus { color: #333 }
.navbar-default .btn-link[disabled]:hover,fieldset[disabled] .navbar-default .btn-link:hover,.navbar-default .btn-link[disabled]:focus,fieldset[disabled] .navbar-default .btn-link:focus { color: #ccc }
.navbar-inverse { background-color: #222; border-color: #080808 }
.navbar-inverse .navbar-brand { color: #9d9d9d }
.navbar-inverse .navbar-brand:hover,.navbar-inverse .navbar-brand:focus { color: #fff; background-color: transparent }
.navbar-inverse .navbar-text { color: #9d9d9d }
.navbar-inverse .navbar-nav>li>a { color: #9d9d9d }
.navbar-inverse .navbar-nav>li>a:hover,.navbar-inverse .navbar-nav>li>a:focus { color: #fff; background-color: transparent }
.navbar-inverse .navbar-nav>.active>a,.navbar-inverse .navbar-nav>.active>a:hover,.navbar-inverse .navbar-nav>.active>a:focus { color: #fff; background-color: #080808 }
.navbar-inverse .navbar-nav>.disabled>a,.navbar-inverse .navbar-nav>.disabled>a:hover,.navbar-inverse .navbar-nav>.disabled>a:focus { color: #444; background-color: transparent }
.navbar-inverse .navbar-toggle { border-color: #333 }
.navbar-inverse .navbar-toggle:hover,.navbar-inverse .navbar-toggle:focus { background-color: #333 }
.navbar-inverse .navbar-toggle .icon-bar { background-color: #fff }
.navbar-inverse .navbar-collapse,.navbar-inverse .navbar-form { border-color: #101010 }
.navbar-inverse .navbar-nav>.open>a,.navbar-inverse .navbar-nav>.open>a:hover,.navbar-inverse .navbar-nav>.open>a:focus { background-color: #080808; color: #fff }
.navbar-inverse .navbar-link { color: #9d9d9d }
.navbar-inverse .navbar-link:hover { color: #fff }
.navbar-inverse .btn-link { color: #9d9d9d }
.navbar-inverse .btn-link:hover,.navbar-inverse .btn-link:focus { color: #fff }
.navbar-inverse .btn-link[disabled]:hover,fieldset[disabled] .navbar-inverse .btn-link:hover,.navbar-inverse .btn-link[disabled]:focus,fieldset[disabled] .navbar-inverse .btn-link:focus { color: #444 }
.breadcrumb { padding: 8px 15px; margin-bottom: 18px; list-style: none; background-color: #f5f5f5 }
.breadcrumb>li { display: inline-block }
.breadcrumb>li+li::before { content: "/?"; padding: 0 5px; color: #5e5e5e }
.breadcrumb>.active { color: #777777 }
.pagination { display: inline-block; padding-left: 0; margin: 18px 0 }
.pagination>li { display: inline }
.pagination>li>a,.pagination>li>span { position: relative; float: left; padding: 6px 12px; line-height: 1.42857143; text-decoration: none; color: #337ab7; background-color: #fff; border: 1px solid #ddd; margin-left: -1px }
.pagination>li:first-child>a,.pagination>li:first-child>span { margin-left: 0 }
.pagination>li:last-child>a,.pagination>li:last-child>span { }
.pagination>li>a:hover,.pagination>li>span:hover,.pagination>li>a:focus,.pagination>li>span:focus { z-index: 2; color: #23527c; background-color: #eeeeee; border-color: #ddd }
.pagination>.active>a,.pagination>.active>span,.pagination>.active>a:hover,.pagination>.active>span:hover,.pagination>.active>a:focus,.pagination>.active>span:focus { z-index: 3; color: #fff; background-color: #337ab7; border-color: #337ab7; cursor: default }
.pagination>.disabled>span,.pagination>.disabled>span:hover,.pagination>.disabled>span:focus,.pagination>.disabled>a,.pagination>.disabled>a:hover,.pagination>.disabled>a:focus { color: #777777; background-color: #fff; border-color: #ddd; cursor: not-allowed }
.pagination-lg>li>a,.pagination-lg>li>span { padding: 10px 16px; font-size: 17px; line-height: 1.3333333 }
.pagination-lg>li:first-child>a,.pagination-lg>li:first-child>span { }
.pagination-lg>li:last-child>a,.pagination-lg>li:last-child>span { }
.pagination-sm>li>a,.pagination-sm>li>span { padding: 5px 10px; font-size: 12px; line-height: 1.5 }
.pagination-sm>li:first-child>a,.pagination-sm>li:first-child>span { }
.pagination-sm>li:last-child>a,.pagination-sm>li:last-child>span { }
.pager { padding-left: 0; margin: 18px 0; list-style: none; text-align: center }
.pager li { display: inline }
.pager li>a,.pager li>span { display: inline-block; padding: 5px 14px; background-color: #fff; border: 1px solid #ddd }
.pager li>a:hover,.pager li>a:focus { text-decoration: none; background-color: #eeeeee }
.pager .next>a,.pager .next>span { float: right }
.pager .previous>a,.pager .previous>span { float: left }
.pager .disabled>a,.pager .disabled>a:hover,.pager .disabled>a:focus,.pager .disabled>span { color: #777777; background-color: #fff; cursor: not-allowed }
.label { display: inline; padding: .2em .6em .3em; font-size: 75%; font-weight: bold; line-height: 1; color: #fff; text-align: center; white-space: nowrap; vertical-align: baseline }
a.label:hover,a.label:focus { color: #fff; text-decoration: none; cursor: pointer }
.label:empty { display: none }
.btn .label { position: relative; top: -1px }
.label-default { background-color: #777777 }
.label-default[href]:hover,.label-default[href]:focus { background-color: #5e5e5e }
.label-primary { background-color: #337ab7 }
.label-primary[href]:hover,.label-primary[href]:focus { background-color: #286090 }
.label-success { background-color: #5cb85c }
.label-success[href]:hover,.label-success[href]:focus { background-color: #449d44 }
.label-info { background-color: #5bc0de }
.label-info[href]:hover,.label-info[href]:focus { background-color: #31b0d5 }
.label-warning { background-color: #f0ad4e }
.label-warning[href]:hover,.label-warning[href]:focus { background-color: #ec971f }
.label-danger { background-color: #d9534f }
.label-danger[href]:hover,.label-danger[href]:focus { background-color: #c9302c }
.badge { display: inline-block; min-width: 10px; padding: 3px 7px; font-size: 12px; font-weight: bold; color: #fff; line-height: 1; vertical-align: middle; white-space: nowrap; text-align: center; background-color: #777777 }
.badge:empty { display: none }
.btn .badge { position: relative; top: -1px }
.btn-xs .badge,.btn-group-xs>.btn .badge { top: 0; padding: 1px 5px }
a.badge:hover,a.badge:focus { color: #fff; text-decoration: none; cursor: pointer }
.list-group-item.active>.badge,.nav-pills>.active>a>.badge { color: #337ab7; background-color: #fff }
.list-group-item>.badge { float: right }
.list-group-item>.badge+.badge { margin-right: 5px }
.nav-pills>li>a>.badge { margin-left: 3px }
.jumbotron { padding-top: 30px; padding-bottom: 30px; margin-bottom: 30px; color: inherit; background-color: #eeeeee }
.jumbotron h1,.jumbotron .h1 { color: inherit }
.jumbotron p { margin-bottom: 15px; font-size: 20px; font-weight: 200 }
.jumbotron>hr { border-top-color: #d5d5d5 }
.container .jumbotron,.container-fluid .jumbotron { padding-left: 0px; padding-right: 0px }
.jumbotron .container { max-width: 100% }
.thumbnail { display: block; padding: 4px; margin-bottom: 18px; line-height: 1.42857143; background-color: #fff; border: 1px solid #ddd }
.thumbnail>img,.thumbnail a>img { margin-left: auto; margin-right: auto }
a.thumbnail:hover,a.thumbnail:focus,a.thumbnail.active { border-color: #337ab7 }
.thumbnail .caption { padding: 9px; color: #000 }
.alert { padding: 15px; margin-bottom: 18px; border: 1px solid transparent }
.alert h4 { margin-top: 0; color: inherit }
.alert .alert-link { font-weight: bold }
.alert>p,.alert>ul { margin-bottom: 0 }
.alert>p+p { margin-top: 5px }
.alert-dismissable,.alert-dismissible { padding-right: 35px }
.alert-dismissable .close,.alert-dismissible .close { position: relative; top: -2px; right: -21px; color: inherit }
.alert-success { background-color: #dff0d8; border-color: #d6e9c6; color: #3c763d }
.alert-success hr { border-top-color: #c9e2b3 }
.alert-success .alert-link { color: #2b542c }
.alert-info { background-color: #d9edf7; border-color: #bce8f1; color: #31708f }
.alert-info hr { border-top-color: #a6e1ec }
.alert-info .alert-link { color: #245269 }
.alert-warning { background-color: #fcf8e3; border-color: #faebcc; color: #8a6d3b }
.alert-warning hr { border-top-color: #f7e1b5 }
.alert-warning .alert-link { color: #66512c }
.alert-danger { background-color: #f2dede; border-color: #ebccd1; color: #a94442 }
.alert-danger hr { border-top-color: #e4b9c0 }
.alert-danger .alert-link { color: #843534 }
.progress { overflow: hidden; height: 18px; margin-bottom: 18px; background-color: #f5f5f5 }
.progress-bar { float: left; width: 0%; height: 100%; font-size: 12px; line-height: 18px; color: #fff; text-align: center; background-color: #337ab7 }
.progress-striped .progress-bar,.progress-bar-striped { background-image: linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent) }
.progress.active .progress-bar,.progress-bar.active { }
.progress-bar-success { background-color: #5cb85c }
.progress-striped .progress-bar-success { background-image: linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent) }
.progress-bar-info { background-color: #5bc0de }
.progress-striped .progress-bar-info { background-image: linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent) }
.progress-bar-warning { background-color: #f0ad4e }
.progress-striped .progress-bar-warning { background-image: linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent) }
.progress-bar-danger { background-color: #d9534f }
.progress-striped .progress-bar-danger { background-image: linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent) }
.media { margin-top: 15px }
.media:first-child { margin-top: 0 }
.media,.media-body { overflow: hidden }
.media-body { width: 10000px }
.media-object { display: block }
.media-object.img-thumbnail { max-width: none }
.media-right,.media>.pull-right { padding-left: 10px }
.media-left,.media>.pull-left { padding-right: 10px }
.media-left,.media-right,.media-body { display: table-cell; vertical-align: top }
.media-middle { vertical-align: middle }
.media-bottom { vertical-align: bottom }
.media-heading { margin-top: 0; margin-bottom: 5px }
.media-list { padding-left: 0; list-style: none }
.list-group { margin-bottom: 20px; padding-left: 0 }
.list-group-item { position: relative; display: block; padding: 10px 15px; margin-bottom: -1px; background-color: #fff; border: 1px solid #ddd }
.list-group-item:first-child { }
.list-group-item:last-child { margin-bottom: 0 }
a.list-group-item,button.list-group-item { color: #555 }
a.list-group-item .list-group-item-heading,button.list-group-item .list-group-item-heading { color: #333 }
a.list-group-item:hover,button.list-group-item:hover,a.list-group-item:focus,button.list-group-item:focus { text-decoration: none; color: #555; background-color: #f5f5f5 }
button.list-group-item { width: 100%; text-align: left }
.list-group-item.disabled,.list-group-item.disabled:hover,.list-group-item.disabled:focus { background-color: #eeeeee; color: #777777; cursor: not-allowed }
.list-group-item.disabled .list-group-item-heading,.list-group-item.disabled:hover .list-group-item-heading,.list-group-item.disabled:focus .list-group-item-heading { color: inherit }
.list-group-item.disabled .list-group-item-text,.list-group-item.disabled:hover .list-group-item-text,.list-group-item.disabled:focus .list-group-item-text { color: #777777 }
.list-group-item.active,.list-group-item.active:hover,.list-group-item.active:focus { z-index: 2; color: #fff; background-color: #337ab7; border-color: #337ab7 }
.list-group-item.active .list-group-item-heading,.list-group-item.active:hover .list-group-item-heading,.list-group-item.active:focus .list-group-item-heading,.list-group-item.active .list-group-item-heading>small,.list-group-item.active:hover .list-group-item-heading>small,.list-group-item.active:focus .list-group-item-heading>small,.list-group-item.active .list-group-item-heading>.small,.list-group-item.active:hover .list-group-item-heading>.small,.list-group-item.active:focus .list-group-item-heading>.small { color: inherit }
.list-group-item.active .list-group-item-text,.list-group-item.active:hover .list-group-item-text,.list-group-item.active:focus .list-group-item-text { color: #c7ddef }
.list-group-item-success { color: #3c763d; background-color: #dff0d8 }
a.list-group-item-success,button.list-group-item-success { color: #3c763d }
a.list-group-item-success .list-group-item-heading,button.list-group-item-success .list-group-item-heading { color: inherit }
a.list-group-item-success:hover,button.list-group-item-success:hover,a.list-group-item-success:focus,button.list-group-item-success:focus { color: #3c763d; background-color: #d0e9c6 }
a.list-group-item-success.active,button.list-group-item-success.active,a.list-group-item-success.active:hover,button.list-group-item-success.active:hover,a.list-group-item-success.active:focus,button.list-group-item-success.active:focus { color: #fff; background-color: #3c763d; border-color: #3c763d }
.list-group-item-info { color: #31708f; background-color: #d9edf7 }
a.list-group-item-info,button.list-group-item-info { color: #31708f }
a.list-group-item-info .list-group-item-heading,button.list-group-item-info .list-group-item-heading { color: inherit }
a.list-group-item-info:hover,button.list-group-item-info:hover,a.list-group-item-info:focus,button.list-group-item-info:focus { color: #31708f; background-color: #c4e3f3 }
a.list-group-item-info.active,button.list-group-item-info.active,a.list-group-item-info.active:hover,button.list-group-item-info.active:hover,a.list-group-item-info.active:focus,button.list-group-item-info.active:focus { color: #fff; background-color: #31708f; border-color: #31708f }
.list-group-item-warning { color: #8a6d3b; background-color: #fcf8e3 }
a.list-group-item-warning,button.list-group-item-warning { color: #8a6d3b }
a.list-group-item-warning .list-group-item-heading,button.list-group-item-warning .list-group-item-heading { color: inherit }
a.list-group-item-warning:hover,button.list-group-item-warning:hover,a.list-group-item-warning:focus,button.list-group-item-warning:focus { color: #8a6d3b; background-color: #faf2cc }
a.list-group-item-warning.active,button.list-group-item-warning.active,a.list-group-item-warning.active:hover,button.list-group-item-warning.active:hover,a.list-group-item-warning.active:focus,button.list-group-item-warning.active:focus { color: #fff; background-color: #8a6d3b; border-color: #8a6d3b }
.list-group-item-danger { color: #a94442; background-color: #f2dede }
a.list-group-item-danger,button.list-group-item-danger { color: #a94442 }
a.list-group-item-danger .list-group-item-heading,button.list-group-item-danger .list-group-item-heading { color: inherit }
a.list-group-item-danger:hover,button.list-group-item-danger:hover,a.list-group-item-danger:focus,button.list-group-item-danger:focus { color: #a94442; background-color: #ebcccc }
a.list-group-item-danger.active,button.list-group-item-danger.active,a.list-group-item-danger.active:hover,button.list-group-item-danger.active:hover,a.list-group-item-danger.active:focus,button.list-group-item-danger.active:focus { color: #fff; background-color: #a94442; border-color: #a94442 }
.list-group-item-heading { margin-top: 0; margin-bottom: 5px }
.list-group-item-text { margin-bottom: 0; line-height: 1.3 }
.panel { margin-bottom: 18px; background-color: #fff; border: 1px solid transparent }
.panel-body { padding: 15px }
.panel-heading { padding: 10px 15px; border-bottom: 1px solid transparent }
.panel-heading>.dropdown .dropdown-toggle { color: inherit }
.panel-title { margin-top: 0; margin-bottom: 0; font-size: 15px; color: inherit }
.panel-title>a,.panel-title>small,.panel-title>.small,.panel-title>small>a,.panel-title>.small>a { color: inherit }
.panel-footer { padding: 10px 15px; background-color: #f5f5f5; border-top: 1px solid #ddd }
.panel>.list-group,.panel>.panel-collapse>.list-group { margin-bottom: 0 }
.panel>.list-group .list-group-item,.panel>.panel-collapse>.list-group .list-group-item { border-width: 1px 0 }
.panel>.list-group:first-child .list-group-item:first-child,.panel>.panel-collapse>.list-group:first-child .list-group-item:first-child { border-top: 0 }
.panel>.list-group:last-child .list-group-item:last-child,.panel>.panel-collapse>.list-group:last-child .list-group-item:last-child { border-bottom: 0 }
.panel>.panel-heading+.panel-collapse>.list-group .list-group-item:first-child { }
.panel-heading+.list-group .list-group-item:first-child { border-top-width: 0 }
.list-group+.panel-footer { border-top-width: 0 }
.panel>.table,.panel>.table-responsive>.table,.panel>.panel-collapse>.table { margin-bottom: 0 }
.panel>.table caption,.panel>.table-responsive>.table caption,.panel>.panel-collapse>.table caption { padding-left: 15px; padding-right: 15px }
.panel>.table:first-child,.panel>.table-responsive:first-child>.table:first-child { }
.panel>.table:first-child>thead:first-child>tr:first-child,.panel>.table-responsive:first-child>.table:first-child>thead:first-child>tr:first-child,.panel>.table:first-child>tbody:first-child>tr:first-child,.panel>.table-responsive:first-child>.table:first-child>tbody:first-child>tr:first-child { }
.panel>.table:first-child>thead:first-child>tr:first-child td:first-child,.panel>.table-responsive:first-child>.table:first-child>thead:first-child>tr:first-child td:first-child,.panel>.table:first-child>tbody:first-child>tr:first-child td:first-child,.panel>.table-responsive:first-child>.table:first-child>tbody:first-child>tr:first-child td:first-child,.panel>.table:first-child>thead:first-child>tr:first-child th:first-child,.panel>.table-responsive:first-child>.table:first-child>thead:first-child>tr:first-child th:first-child,.panel>.table:first-child>tbody:first-child>tr:first-child th:first-child,.panel>.table-responsive:first-child>.table:first-child>tbody:first-child>tr:first-child th:first-child { }
.panel>.table:first-child>thead:first-child>tr:first-child td:last-child,.panel>.table-responsive:first-child>.table:first-child>thead:first-child>tr:first-child td:last-child,.panel>.table:first-child>tbody:first-child>tr:first-child td:last-child,.panel>.table-responsive:first-child>.table:first-child>tbody:first-child>tr:first-child td:last-child,.panel>.table:first-child>thead:first-child>tr:first-child th:last-child,.panel>.table-responsive:first-child>.table:first-child>thead:first-child>tr:first-child th:last-child,.panel>.table:first-child>tbody:first-child>tr:first-child th:last-child,.panel>.table-responsive:first-child>.table:first-child>tbody:first-child>tr:first-child th:last-child { }
.panel>.table:last-child,.panel>.table-responsive:last-child>.table:last-child { }
.panel>.table:last-child>tbody:last-child>tr:last-child,.panel>.table-responsive:last-child>.table:last-child>tbody:last-child>tr:last-child,.panel>.table:last-child>tfoot:last-child>tr:last-child,.panel>.table-responsive:last-child>.table:last-child>tfoot:last-child>tr:last-child { }
.panel>.table:last-child>tbody:last-child>tr:last-child td:first-child,.panel>.table-responsive:last-child>.table:last-child>tbody:last-child>tr:last-child td:first-child,.panel>.table:last-child>tfoot:last-child>tr:last-child td:first-child,.panel>.table-responsive:last-child>.table:last-child>tfoot:last-child>tr:last-child td:first-child,.panel>.table:last-child>tbody:last-child>tr:last-child th:first-child,.panel>.table-responsive:last-child>.table:last-child>tbody:last-child>tr:last-child th:first-child,.panel>.table:last-child>tfoot:last-child>tr:last-child th:first-child,.panel>.table-responsive:last-child>.table:last-child>tfoot:last-child>tr:last-child th:first-child { }
.panel>.table:last-child>tbody:last-child>tr:last-child td:last-child,.panel>.table-responsive:last-child>.table:last-child>tbody:last-child>tr:last-child td:last-child,.panel>.table:last-child>tfoot:last-child>tr:last-child td:last-child,.panel>.table-responsive:last-child>.table:last-child>tfoot:last-child>tr:last-child td:last-child,.panel>.table:last-child>tbody:last-child>tr:last-child th:last-child,.panel>.table-responsive:last-child>.table:last-child>tbody:last-child>tr:last-child th:last-child,.panel>.table:last-child>tfoot:last-child>tr:last-child th:last-child,.panel>.table-responsive:last-child>.table:last-child>tfoot:last-child>tr:last-child th:last-child { }
.panel>.panel-body+.table,.panel>.panel-body+.table-responsive,.panel>.table+.panel-body,.panel>.table-responsive+.panel-body { border-top: 1px solid #ddd }
.panel>.table>tbody:first-child>tr:first-child th,.panel>.table>tbody:first-child>tr:first-child td { border-top: 0 }
.panel>.table-bordered,.panel>.table-responsive>.table-bordered { border: 0 }
.panel>.table-bordered>thead>tr>th:first-child,.panel>.table-responsive>.table-bordered>thead>tr>th:first-child,.panel>.table-bordered>tbody>tr>th:first-child,.panel>.table-responsive>.table-bordered>tbody>tr>th:first-child,.panel>.table-bordered>tfoot>tr>th:first-child,.panel>.table-responsive>.table-bordered>tfoot>tr>th:first-child,.panel>.table-bordered>thead>tr>td:first-child,.panel>.table-responsive>.table-bordered>thead>tr>td:first-child,.panel>.table-bordered>tbody>tr>td:first-child,.panel>.table-responsive>.table-bordered>tbody>tr>td:first-child,.panel>.table-bordered>tfoot>tr>td:first-child,.panel>.table-responsive>.table-bordered>tfoot>tr>td:first-child { border-left: 0 }
.panel>.table-bordered>thead>tr>th:last-child,.panel>.table-responsive>.table-bordered>thead>tr>th:last-child,.panel>.table-bordered>tbody>tr>th:last-child,.panel>.table-responsive>.table-bordered>tbody>tr>th:last-child,.panel>.table-bordered>tfoot>tr>th:last-child,.panel>.table-responsive>.table-bordered>tfoot>tr>th:last-child,.panel>.table-bordered>thead>tr>td:last-child,.panel>.table-responsive>.table-bordered>thead>tr>td:last-child,.panel>.table-bordered>tbody>tr>td:last-child,.panel>.table-responsive>.table-bordered>tbody>tr>td:last-child,.panel>.table-bordered>tfoot>tr>td:last-child,.panel>.table-responsive>.table-bordered>tfoot>tr>td:last-child { border-right: 0 }
.panel>.table-bordered>thead>tr:first-child>td,.panel>.table-responsive>.table-bordered>thead>tr:first-child>td,.panel>.table-bordered>tbody>tr:first-child>td,.panel>.table-responsive>.table-bordered>tbody>tr:first-child>td,.panel>.table-bordered>thead>tr:first-child>th,.panel>.table-responsive>.table-bordered>thead>tr:first-child>th,.panel>.table-bordered>tbody>tr:first-child>th,.panel>.table-responsive>.table-bordered>tbody>tr:first-child>th { border-bottom: 0 }
.panel>.table-bordered>tbody>tr:last-child>td,.panel>.table-responsive>.table-bordered>tbody>tr:last-child>td,.panel>.table-bordered>tfoot>tr:last-child>td,.panel>.table-responsive>.table-bordered>tfoot>tr:last-child>td,.panel>.table-bordered>tbody>tr:last-child>th,.panel>.table-responsive>.table-bordered>tbody>tr:last-child>th,.panel>.table-bordered>tfoot>tr:last-child>th,.panel>.table-responsive>.table-bordered>tfoot>tr:last-child>th { border-bottom: 0 }
.panel>.table-responsive { border: 0; margin-bottom: 0 }
.panel-group { margin-bottom: 18px }
.panel-group .panel { margin-bottom: 0 }
.panel-group .panel+.panel { margin-top: 5px }
.panel-group .panel-heading { border-bottom: 0 }
.panel-group .panel-heading+.panel-collapse>.panel-body,.panel-group .panel-heading+.panel-collapse>.list-group { border-top: 1px solid #ddd }
.panel-group .panel-footer { border-top: 0 }
.panel-group .panel-footer+.panel-collapse .panel-body { border-bottom: 1px solid #ddd }
.panel-default { border-color: #ddd }
.panel-default>.panel-heading { color: #333333; background-color: #f5f5f5; border-color: #ddd }
.panel-default>.panel-heading+.panel-collapse>.panel-body { border-top-color: #ddd }
.panel-default>.panel-heading .badge { color: #f5f5f5; background-color: #333333 }
.panel-default>.panel-footer+.panel-collapse>.panel-body { border-bottom-color: #ddd }
.panel-primary { border-color: #337ab7 }
.panel-primary>.panel-heading { color: #fff; background-color: #337ab7; border-color: #337ab7 }
.panel-primary>.panel-heading+.panel-collapse>.panel-body { border-top-color: #337ab7 }
.panel-primary>.panel-heading .badge { color: #337ab7; background-color: #fff }
.panel-primary>.panel-footer+.panel-collapse>.panel-body { border-bottom-color: #337ab7 }
.panel-success { border-color: #d6e9c6 }
.panel-success>.panel-heading { color: #3c763d; background-color: #dff0d8; border-color: #d6e9c6 }
.panel-success>.panel-heading+.panel-collapse>.panel-body { border-top-color: #d6e9c6 }
.panel-success>.panel-heading .badge { color: #dff0d8; background-color: #3c763d }
.panel-success>.panel-footer+.panel-collapse>.panel-body { border-bottom-color: #d6e9c6 }
.panel-info { border-color: #bce8f1 }
.panel-info>.panel-heading { color: #31708f; background-color: #d9edf7; border-color: #bce8f1 }
.panel-info>.panel-heading+.panel-collapse>.panel-body { border-top-color: #bce8f1 }
.panel-info>.panel-heading .badge { color: #d9edf7; background-color: #31708f }
.panel-info>.panel-footer+.panel-collapse>.panel-body { border-bottom-color: #bce8f1 }
.panel-warning { border-color: #faebcc }
.panel-warning>.panel-heading { color: #8a6d3b; background-color: #fcf8e3; border-color: #faebcc }
.panel-warning>.panel-heading+.panel-collapse>.panel-body { border-top-color: #faebcc }
.panel-warning>.panel-heading .badge { color: #fcf8e3; background-color: #8a6d3b }
.panel-warning>.panel-footer+.panel-collapse>.panel-body { border-bottom-color: #faebcc }
.panel-danger { border-color: #ebccd1 }
.panel-danger>.panel-heading { color: #a94442; background-color: #f2dede; border-color: #ebccd1 }
.panel-danger>.panel-heading+.panel-collapse>.panel-body { border-top-color: #ebccd1 }
.panel-danger>.panel-heading .badge { color: #f2dede; background-color: #a94442 }
.panel-danger>.panel-footer+.panel-collapse>.panel-body { border-bottom-color: #ebccd1 }
.embed-responsive { position: relative; display: block; height: 0; padding: 0; overflow: hidden }
.embed-responsive .embed-responsive-item,.embed-responsive iframe,.embed-responsive embed,.embed-responsive object,.embed-responsive video { position: absolute; top: 0; left: 0; bottom: 0; height: 100%; width: 100%; border: 0 }
.embed-responsive-16by9 { padding-bottom: 56.25% }
.embed-responsive-4by3 { padding-bottom: 75% }
.well { min-height: 20px; padding: 19px; margin-bottom: 20px; background-color: #f5f5f5; border: 1px solid #e3e3e3 }
.well blockquote { border-color: rgba(0, 0, 0, 0.15) }
.well-lg { padding: 24px }
.well-sm { padding: 9px }
.close { float: right; font-size: 19.5px; font-weight: bold; line-height: 1; color: #000; opacity: 0.2 }
.close:hover,.close:focus { color: #000; text-decoration: none; cursor: pointer; opacity: 0.5 }
button.close { padding: 0; cursor: pointer; background: transparent; border: 0 }
.modal-open { overflow: hidden }
.modal { display: none; overflow: hidden; position: fixed; top: 0; right: 0; bottom: 0; left: 0; z-index: 1050; outline: 0 }
.modal.fade .modal-dialog { }
.modal.in .modal-dialog { }
.modal-open .modal { }
.modal-dialog { position: relative; width: auto; margin: 10px }
.modal-content { position: relative; background-color: #fff; border: 1px solid rgba(0, 0, 0, 0.2); outline: 0 }
.modal-backdrop { position: fixed; top: 0; right: 0; bottom: 0; left: 0; z-index: 1040; background-color: #000 }
.modal-backdrop.fade { opacity: 0 }
.modal-backdrop.in { opacity: 0.5 }
.modal-header { padding: 15px; border-bottom: 1px solid #e5e5e5 }
.modal-header .close { margin-top: -2px }
.modal-title { margin: 0; line-height: 1.42857143 }
.modal-body { position: relative; padding: 15px }
.modal-footer { padding: 15px; text-align: right; border-top: 1px solid #e5e5e5 }
.modal-footer .btn+.btn { margin-left: 5px; margin-bottom: 0 }
.modal-footer .btn-group .btn+.btn { margin-left: -1px }
.modal-footer .btn-block+.btn-block { margin-left: 0 }
.modal-scrollbar-measure { position: absolute; top: -9999px; width: 50px; height: 50px; overflow: scroll }
.tooltip { position: absolute; z-index: 1070; display: block; font-family: "Helvetica Neue", Helvetica, Arial, sans-serif; font-style: normal; font-weight: normal; letter-spacing: normal; line-height: 1.42857143; text-align: start; text-decoration: none; text-transform: none; white-space: normal; word-spacing: normal; font-size: 12px; opacity: 0 }
.tooltip.in { opacity: 0.9 }
.tooltip.top { margin-top: -3px; padding: 5px 0 }
.tooltip.right { margin-left: 3px; padding: 0 5px }
.tooltip.bottom { margin-top: 3px; padding: 5px 0 }
.tooltip.left { margin-left: -3px; padding: 0 5px }
.tooltip-inner { max-width: 200px; padding: 3px 8px; color: #fff; text-align: center; background-color: #000 }
.tooltip-arrow { position: absolute; width: 0; height: 0; border-color: transparent; border-style: solid }
.tooltip.top .tooltip-arrow { bottom: 0; left: 50%; margin-left: -5px; border-width: 5px 5px 0; border-top-color: #000 }
.tooltip.top-left .tooltip-arrow { bottom: 0; right: 5px; margin-bottom: -5px; border-width: 5px 5px 0; border-top-color: #000 }
.tooltip.top-right .tooltip-arrow { bottom: 0; left: 5px; margin-bottom: -5px; border-width: 5px 5px 0; border-top-color: #000 }
.tooltip.right .tooltip-arrow { top: 50%; left: 0; margin-top: -5px; border-width: 5px 5px 5px 0; border-right-color: #000 }
.tooltip.left .tooltip-arrow { top: 50%; right: 0; margin-top: -5px; border-width: 5px 0 5px 5px; border-left-color: #000 }
.tooltip.bottom .tooltip-arrow { top: 0; left: 50%; margin-left: -5px; border-width: 0 5px 5px; border-bottom-color: #000 }
.tooltip.bottom-left .tooltip-arrow { top: 0; right: 5px; margin-top: -5px; border-width: 0 5px 5px; border-bottom-color: #000 }
.tooltip.bottom-right .tooltip-arrow { top: 0; left: 5px; margin-top: -5px; border-width: 0 5px 5px; border-bottom-color: #000 }
.popover { position: absolute; top: 0; left: 0; z-index: 1060; display: none; max-width: 276px; padding: 1px; font-family: "Helvetica Neue", Helvetica, Arial, sans-serif; font-style: normal; font-weight: normal; letter-spacing: normal; line-height: 1.42857143; text-align: start; text-decoration: none; text-transform: none; white-space: normal; word-spacing: normal; font-size: 13px; background-color: #fff; border: 1px solid rgba(0, 0, 0, 0.2) }
.popover.top { margin-top: -10px }
.popover.right { margin-left: 10px }
.popover.bottom { margin-top: 10px }
.popover.left { margin-left: -10px }
.popover-title { margin: 0; padding: 8px 14px; font-size: 13px; background-color: #f7f7f7; border-bottom: 1px solid #ebebeb }
.popover-content { padding: 9px 14px }
.popover>.arrow,.popover>.arrow::after { position: absolute; display: block; width: 0; height: 0; border-color: transparent; border-style: solid }
.popover>.arrow { border-width: 11px }
.popover>.arrow::after { border-width: 10px; content: "" }
.popover.top>.arrow { left: 50%; margin-left: -11px; border-bottom-width: 0; border-top-color: rgba(0, 0, 0, 0.25); bottom: -11px }
.popover.top>.arrow::after { content: " "; bottom: 1px; margin-left: -10px; border-bottom-width: 0; border-top-color: #fff }
.popover.right>.arrow { top: 50%; left: -11px; margin-top: -11px; border-left-width: 0; border-right-color: rgba(0, 0, 0, 0.25) }
.popover.right>.arrow::after { content: " "; left: 1px; bottom: -10px; border-left-width: 0; border-right-color: #fff }
.popover.bottom>.arrow { left: 50%; margin-left: -11px; border-top-width: 0; border-bottom-color: rgba(0, 0, 0, 0.25); top: -11px }
.popover.bottom>.arrow::after { content: " "; top: 1px; margin-left: -10px; border-top-width: 0; border-bottom-color: #fff }
.popover.left>.arrow { top: 50%; right: -11px; margin-top: -11px; border-right-width: 0; border-left-color: rgba(0, 0, 0, 0.25) }
.popover.left>.arrow::after { content: " "; right: 1px; border-right-width: 0; border-left-color: #fff; bottom: -10px }
.carousel { position: relative }
.carousel-inner { position: relative; overflow: hidden; width: 100% }
.carousel-inner>.item { display: none; position: relative }
.carousel-inner>.item>img,.carousel-inner>.item>a>img { line-height: 1 }
.carousel-inner>.active,.carousel-inner>.next,.carousel-inner>.prev { display: block }
.carousel-inner>.active { left: 0 }
.carousel-inner>.next,.carousel-inner>.prev { position: absolute; top: 0; width: 100% }
.carousel-inner>.next { left: 100% }
.carousel-inner>.prev { left: -100% }
.carousel-inner>.next.left,.carousel-inner>.prev.right { left: 0 }
.carousel-inner>.active.left { left: -100% }
.carousel-inner>.active.right { left: 100% }
.carousel-control { position: absolute; top: 0; left: 0; bottom: 0; width: 15%; opacity: 0.5; font-size: 20px; color: #fff; text-align: center; background-color: rgba(0, 0, 0, 0) }
.carousel-control.left { background-image: linear-gradient(to right, rgba(0, 0, 0, 0.5) 0%, rgba(0, 0, 0, 0.0001) 100%); background-repeat: repeat-x }
.carousel-control.right { left: auto; right: 0; background-image: linear-gradient(to right, rgba(0, 0, 0, 0.0001) 0%, rgba(0, 0, 0, 0.5) 100%); background-repeat: repeat-x }
.carousel-control:hover,.carousel-control:focus { outline: 0; color: #fff; text-decoration: none; opacity: 0.9 }
.carousel-control .icon-prev,.carousel-control .icon-next,.carousel-control .glyphicon-chevron-left,.carousel-control .glyphicon-chevron-right { position: absolute; top: 50%; margin-top: -10px; z-index: 5; display: inline-block }
.carousel-control .icon-prev,.carousel-control .glyphicon-chevron-left { left: 50%; margin-left: -10px }
.carousel-control .icon-next,.carousel-control .glyphicon-chevron-right { right: 50%; margin-right: -10px }
.carousel-control .icon-prev,.carousel-control .icon-next { width: 20px; height: 20px; line-height: 1; font-family: serif }
.carousel-control .icon-prev::before { content: "?" }
.carousel-control .icon-next::before { content: "?" }
.carousel-indicators { position: absolute; bottom: 10px; left: 50%; z-index: 15; width: 60%; margin-left: -30%; padding-left: 0; list-style: none; text-align: center }
.carousel-indicators li { display: inline-block; width: 10px; height: 10px; margin: 1px; text-indent: -999px; border: 1px solid #fff; cursor: pointer; background-color: rgba(0, 0, 0, 0) }
.carousel-indicators .active { margin: 0; width: 12px; height: 12px; background-color: #fff }
.carousel-caption { position: absolute; left: 15%; right: 15%; bottom: 20px; z-index: 10; padding-top: 20px; padding-bottom: 20px; color: #fff; text-align: center }
.carousel-caption .btn { }
.clearfix::before,.clearfix::after,.dl-horizontal dd::before,.dl-horizontal dd::after,.container::before,.container::after,.container-fluid::before,.container-fluid::after,.row::before,.row::after,.form-horizontal .form-group::before,.form-horizontal .form-group::after,.btn-toolbar::before,.btn-toolbar::after,.btn-group-vertical>.btn-group::before,.btn-group-vertical>.btn-group::after,.nav::before,.nav::after,.navbar::before,.navbar::after,.navbar-header::before,.navbar-header::after,.navbar-collapse::before,.navbar-collapse::after,.pager::before,.pager::after,.panel-body::before,.panel-body::after,.modal-header::before,.modal-header::after,.modal-footer::before,.modal-footer::after,.item_buttons::before,.item_buttons::after { content: " "; display: table }
.clearfix::after,.dl-horizontal dd::after,.container::after,.container-fluid::after,.row::after,.form-horizontal .form-group::after,.btn-toolbar::after,.btn-group-vertical>.btn-group::after,.nav::after,.navbar::after,.navbar-header::after,.navbar-collapse::after,.pager::after,.panel-body::after,.modal-header::after,.modal-footer::after,.item_buttons::after { clear: both }
.center-block { display: block; margin-left: auto; margin-right: auto }
.pull-right { float: right !important }
.pull-left { float: left !important }
.hide { display: none !important }
.show { display: block !important }
.invisible { visibility: hidden }
.text-hide { font: 0/0 a; color: transparent; background-color: transparent; border: 0 }
.hidden { display: none !important }
.affix { position: fixed }
.visible-xs,.visible-sm,.visible-md,.visible-lg { display: none !important }
.visible-xs-block,.visible-xs-inline,.visible-xs-inline-block,.visible-sm-block,.visible-sm-inline,.visible-sm-inline-block,.visible-md-block,.visible-md-inline,.visible-md-inline-block,.visible-lg-block,.visible-lg-inline,.visible-lg-inline-block { display: none !important }
.visible-print { display: none !important }
.visible-print-block { display: none !important }
.visible-print-inline { display: none !important }
.visible-print-inline-block { display: none !important }
.fa { display: inline-block; font: normal normal normal 14px/1 FontAwesome; font-size: inherit }
.fa-lg { font-size: 1.33333333em; line-height: 0.75em; vertical-align: -15% }
.fa-2x { font-size: 2em }
.fa-3x { font-size: 3em }
.fa-4x { font-size: 4em }
.fa-5x { font-size: 5em }
.fa-fw { width: 1.28571429em; text-align: center }
.fa-ul { padding-left: 0; margin-left: 2.14285714em; list-style-type: none }
.fa-ul>li { position: relative }
.fa-li { position: absolute; left: -2.14285714em; width: 2.14285714em; top: 0.14285714em; text-align: center }
.fa-li.fa-lg { left: -1.85714286em }
.fa-border { padding: .2em .25em .15em; border: solid 0.08em #eee }
.pull-right { float: right }
.pull-left { float: left }
.fa.pull-left { margin-right: .3em }
.fa.pull-right { margin-left: .3em }
.fa-spin { }
.fa-rotate-90 { }
.fa-rotate-180 { }
.fa-rotate-270 { }
.fa-flip-horizontal { }
.fa-flip-vertical { }
:root .fa-rotate-90,:root .fa-rotate-180,:root .fa-rotate-270,:root .fa-flip-horizontal,:root .fa-flip-vertical { }
.fa-stack { position: relative; display: inline-block; width: 2em; height: 2em; line-height: 2em; vertical-align: middle }
.fa-stack-1x,.fa-stack-2x { position: absolute; left: 0; width: 100%; text-align: center }
.fa-stack-1x { line-height: inherit }
.fa-stack-2x { font-size: 2em }
.fa-inverse { color: #fff }
.fa-glass::before { content: "?" }
.fa-music::before { content: "?" }
.fa-search::before { content: "?" }
.fa-envelope-o::before { content: "?" }
.fa-heart::before { content: "?" }
.fa-star::before { content: "?" }
.fa-star-o::before { content: "?" }
.fa-user::before { content: "?" }
.fa-film::before { content: "?" }
.fa-th-large::before { content: "?" }
.fa-th::before { content: "?" }
.fa-th-list::before { content: "?" }
.fa-check::before { content: "?" }
.fa-remove::before,.fa-close::before,.fa-times::before { content: "?" }
.fa-search-plus::before { content: "?" }
.fa-search-minus::before { content: "?" }
.fa-power-off::before { content: "?" }
.fa-signal::before { content: "?" }
.fa-gear::before,.fa-cog::before { content: "?" }
.fa-trash-o::before { content: "?" }
.fa-home::before { content: "?" }
.fa-file-o::before { content: "?" }
.fa-clock-o::before { content: "?" }
.fa-road::before { content: "?" }
.fa-download::before { content: "?" }
.fa-arrow-circle-o-down::before { content: "?" }
.fa-arrow-circle-o-up::before { content: "?" }
.fa-inbox::before { content: "?" }
.fa-play-circle-o::before { content: "?" }
.fa-rotate-right::before,.fa-repeat::before { content: "?" }
.fa-refresh::before { content: "?" }
.fa-list-alt::before { content: "?" }
.fa-lock::before { content: "?" }
.fa-flag::before { content: "?" }
.fa-headphones::before { content: "?" }
.fa-volume-off::before { content: "?" }
.fa-volume-down::before { content: "?" }
.fa-volume-up::before { content: "?" }
.fa-qrcode::before { content: "?" }
.fa-barcode::before { content: "?" }
.fa-tag::before { content: "?" }
.fa-tags::before { content: "?" }
.fa-book::before { content: "?" }
.fa-bookmark::before { content: "?" }
.fa-print::before { content: "?" }
.fa-camera::before { content: "?" }
.fa-font::before { content: "?" }
.fa-bold::before { content: "?" }
.fa-italic::before { content: "?" }
.fa-text-height::before { content: "?" }
.fa-text-width::before { content: "?" }
.fa-align-left::before { content: "?" }
.fa-align-center::before { content: "?" }
.fa-align-right::before { content: "?" }
.fa-align-justify::before { content: "?" }
.fa-list::before { content: "?" }
.fa-dedent::before,.fa-outdent::before { content: "?" }
.fa-indent::before { content: "?" }
.fa-video-camera::before { content: "?" }
.fa-photo::before,.fa-image::before,.fa-picture-o::before { content: "?" }
.fa-pencil::before { content: "?" }
.fa-map-marker::before { content: "?" }
.fa-adjust::before { content: "?" }
.fa-tint::before { content: "?" }
.fa-edit::before,.fa-pencil-square-o::before { content: "?" }
.fa-share-square-o::before { content: "?" }
.fa-check-square-o::before { content: "?" }
.fa-arrows::before { content: "?" }
.fa-step-backward::before { content: "?" }
.fa-fast-backward::before { content: "?" }
.fa-backward::before { content: "?" }
.fa-play::before { content: "?" }
.fa-pause::before { content: "?" }
.fa-stop::before { content: "?" }
.fa-forward::before { content: "?" }
.fa-fast-forward::before { content: "?" }
.fa-step-forward::before { content: "?" }
.fa-eject::before { content: "?" }
.fa-chevron-left::before { content: "?" }
.fa-chevron-right::before { content: "?" }
.fa-plus-circle::before { content: "?" }
.fa-minus-circle::before { content: "?" }
.fa-times-circle::before { content: "?" }
.fa-check-circle::before { content: "?" }
.fa-question-circle::before { content: "?" }
.fa-info-circle::before { content: "?" }
.fa-crosshairs::before { content: "?" }
.fa-times-circle-o::before { content: "?" }
.fa-check-circle-o::before { content: "?" }
.fa-ban::before { content: "?" }
.fa-arrow-left::before { content: "?" }
.fa-arrow-right::before { content: "?" }
.fa-arrow-up::before { content: "?" }
.fa-arrow-down::before { content: "?" }
.fa-mail-forward::before,.fa-share::before { content: "?" }
.fa-expand::before { content: "?" }
.fa-compress::before { content: "?" }
.fa-plus::before { content: "?" }
.fa-minus::before { content: "?" }
.fa-asterisk::before { content: "?" }
.fa-exclamation-circle::before { content: "?" }
.fa-gift::before { content: "?" }
.fa-leaf::before { content: "?" }
.fa-fire::before { content: "?" }
.fa-eye::before { content: "?" }
.fa-eye-slash::before { content: "?" }
.fa-warning::before,.fa-exclamation-triangle::before { content: "?" }
.fa-plane::before { content: "?" }
.fa-calendar::before { content: "?" }
.fa-random::before { content: "?" }
.fa-comment::before { content: "?" }
.fa-magnet::before { content: "?" }
.fa-chevron-up::before { content: "?" }
.fa-chevron-down::before { content: "?" }
.fa-retweet::before { content: "?" }
.fa-shopping-cart::before { content: "?" }
.fa-folder::before { content: "?" }
.fa-folder-open::before { content: "?" }
.fa-arrows-v::before { content: "?" }
.fa-arrows-h::before { content: "?" }
.fa-bar-chart-o::before,.fa-bar-chart::before { content: "?" }
.fa-twitter-square::before { content: "?" }
.fa-facebook-square::before { content: "?" }
.fa-camera-retro::before { content: "?" }
.fa-key::before { content: "?" }
.fa-gears::before,.fa-cogs::before { content: "?" }
.fa-comments::before { content: "?" }
.fa-thumbs-o-up::before { content: "?" }
.fa-thumbs-o-down::before { content: "?" }
.fa-star-half::before { content: "?" }
.fa-heart-o::before { content: "?" }
.fa-sign-out::before { content: "?" }
.fa-linkedin-square::before { content: "?" }
.fa-thumb-tack::before { content: "?" }
.fa-external-link::before { content: "?" }
.fa-sign-in::before { content: "?" }
.fa-trophy::before { content: "?" }
.fa-github-square::before { content: "?" }
.fa-upload::before { content: "?" }
.fa-lemon-o::before { content: "?" }
.fa-phone::before { content: "?" }
.fa-square-o::before { content: "?" }
.fa-bookmark-o::before { content: "?" }
.fa-phone-square::before { content: "?" }
.fa-twitter::before { content: "?" }
.fa-facebook::before { content: "?" }
.fa-github::before { content: "?" }
.fa-unlock::before { content: "?" }
.fa-credit-card::before { content: "?" }
.fa-rss::before { content: "?" }
.fa-hdd-o::before { content: "?" }
.fa-bullhorn::before { content: "?" }
.fa-bell::before { content: "?" }
.fa-certificate::before { content: "?" }
.fa-hand-o-right::before { content: "?" }
.fa-hand-o-left::before { content: "?" }
.fa-hand-o-up::before { content: "?" }
.fa-hand-o-down::before { content: "?" }
.fa-arrow-circle-left::before { content: "?" }
.fa-arrow-circle-right::before { content: "?" }
.fa-arrow-circle-up::before { content: "?" }
.fa-arrow-circle-down::before { content: "?" }
.fa-globe::before { content: "?" }
.fa-wrench::before { content: "?" }
.fa-tasks::before { content: "?" }
.fa-filter::before { content: "?" }
.fa-briefcase::before { content: "?" }
.fa-arrows-alt::before { content: "?" }
.fa-group::before,.fa-users::before { content: "?" }
.fa-chain::before,.fa-link::before { content: "?" }
.fa-cloud::before { content: "?" }
.fa-flask::before { content: "?" }
.fa-cut::before,.fa-scissors::before { content: "?" }
.fa-copy::before,.fa-files-o::before { content: "?" }
.fa-paperclip::before { content: "?" }
.fa-save::before,.fa-floppy-o::before { content: "?" }
.fa-square::before { content: "?" }
.fa-navicon::before,.fa-reorder::before,.fa-bars::before { content: "?" }
.fa-list-ul::before { content: "?" }
.fa-list-ol::before { content: "?" }
.fa-strikethrough::before { content: "?" }
.fa-underline::before { content: "?" }
.fa-table::before { content: "?" }
.fa-magic::before { content: "?" }
.fa-truck::before { content: "?" }
.fa-pinterest::before { content: "?" }
.fa-pinterest-square::before { content: "?" }
.fa-google-plus-square::before { content: "?" }
.fa-google-plus::before { content: "?" }
.fa-money::before { content: "?" }
.fa-caret-down::before { content: "?" }
.fa-caret-up::before { content: "?" }
.fa-caret-left::before { content: "?" }
.fa-caret-right::before { content: "?" }
.fa-columns::before { content: "?" }
.fa-unsorted::before,.fa-sort::before { content: "?" }
.fa-sort-down::before,.fa-sort-desc::before { content: "?" }
.fa-sort-up::before,.fa-sort-asc::before { content: "?" }
.fa-envelope::before { content: "?" }
.fa-linkedin::before { content: "?" }
.fa-rotate-left::before,.fa-undo::before { content: "?" }
.fa-legal::before,.fa-gavel::before { content: "?" }
.fa-dashboard::before,.fa-tachometer::before { content: "?" }
.fa-comment-o::before { content: "?" }
.fa-comments-o::before { content: "?" }
.fa-flash::before,.fa-bolt::before { content: "?" }
.fa-sitemap::before { content: "?" }
.fa-umbrella::before { content: "?" }
.fa-paste::before,.fa-clipboard::before { content: "?" }
.fa-lightbulb-o::before { content: "?" }
.fa-exchange::before { content: "?" }
.fa-cloud-download::before { content: "?" }
.fa-cloud-upload::before { content: "?" }
.fa-user-md::before { content: "?" }
.fa-stethoscope::before { content: "?" }
.fa-suitcase::before { content: "?" }
.fa-bell-o::before { content: "?" }
.fa-coffee::before { content: "?" }
.fa-cutlery::before { content: "?" }
.fa-file-text-o::before { content: "?" }
.fa-building-o::before { content: "?" }
.fa-hospital-o::before { content: "?" }
.fa-ambulance::before { content: "?" }
.fa-medkit::before { content: "?" }
.fa-fighter-jet::before { content: "?" }
.fa-beer::before { content: "?" }
.fa-h-square::before { content: "?" }
.fa-plus-square::before { content: "?" }
.fa-angle-double-left::before { content: "?" }
.fa-angle-double-right::before { content: "?" }
.fa-angle-double-up::before { content: "?" }
.fa-angle-double-down::before { content: "?" }
.fa-angle-left::before { content: "?" }
.fa-angle-right::before { content: "?" }
.fa-angle-up::before { content: "?" }
.fa-angle-down::before { content: "?" }
.fa-desktop::before { content: "?" }
.fa-laptop::before { content: "?" }
.fa-tablet::before { content: "?" }
.fa-mobile-phone::before,.fa-mobile::before { content: "?" }
.fa-circle-o::before { content: "?" }
.fa-quote-left::before { content: "?" }
.fa-quote-right::before { content: "?" }
.fa-spinner::before { content: "?" }
.fa-circle::before { content: "?" }
.fa-mail-reply::before,.fa-reply::before { content: "?" }
.fa-github-alt::before { content: "?" }
.fa-folder-o::before { content: "?" }
.fa-folder-open-o::before { content: "?" }
.fa-smile-o::before { content: "?" }
.fa-frown-o::before { content: "?" }
.fa-meh-o::before { content: "?" }
.fa-gamepad::before { content: "?" }
.fa-keyboard-o::before { content: "?" }
.fa-flag-o::before { content: "?" }
.fa-flag-checkered::before { content: "?" }
.fa-terminal::before { content: "?" }
.fa-code::before { content: "?" }
.fa-mail-reply-all::before,.fa-reply-all::before { content: "?" }
.fa-star-half-empty::before,.fa-star-half-full::before,.fa-star-half-o::before { content: "?" }
.fa-location-arrow::before { content: "?" }
.fa-crop::before { content: "?" }
.fa-code-fork::before { content: "?" }
.fa-unlink::before,.fa-chain-broken::before { content: "?" }
.fa-question::before { content: "?" }
.fa-info::before { content: "?" }
.fa-exclamation::before { content: "?" }
.fa-superscript::before { content: "?" }
.fa-subscript::before { content: "?" }
.fa-eraser::before { content: "?" }
.fa-puzzle-piece::before { content: "?" }
.fa-microphone::before { content: "?" }
.fa-microphone-slash::before { content: "?" }
.fa-shield::before { content: "?" }
.fa-calendar-o::before { content: "?" }
.fa-fire-extinguisher::before { content: "?" }
.fa-rocket::before { content: "?" }
.fa-maxcdn::before { content: "?" }
.fa-chevron-circle-left::before { content: "?" }
.fa-chevron-circle-right::before { content: "?" }
.fa-chevron-circle-up::before { content: "?" }
.fa-chevron-circle-down::before { content: "?" }
.fa-html5::before { content: "?" }
.fa-css3::before { content: "?" }
.fa-anchor::before { content: "?" }
.fa-unlock-alt::before { content: "?" }
.fa-bullseye::before { content: "?" }
.fa-ellipsis-h::before { content: "?" }
.fa-ellipsis-v::before { content: "?" }
.fa-rss-square::before { content: "?" }
.fa-play-circle::before { content: "?" }
.fa-ticket::before { content: "?" }
.fa-minus-square::before { content: "?" }
.fa-minus-square-o::before { content: "?" }
.fa-level-up::before { content: "?" }
.fa-level-down::before { content: "?" }
.fa-check-square::before { content: "?" }
.fa-pencil-square::before { content: "?" }
.fa-external-link-square::before { content: "?" }
.fa-share-square::before { content: "?" }
.fa-compass::before { content: "?" }
.fa-toggle-down::before,.fa-caret-square-o-down::before { content: "?" }
.fa-toggle-up::before,.fa-caret-square-o-up::before { content: "?" }
.fa-toggle-right::before,.fa-caret-square-o-right::before { content: "?" }
.fa-euro::before,.fa-eur::before { content: "?" }
.fa-gbp::before { content: "?" }
.fa-dollar::before,.fa-usd::before { content: "?" }
.fa-rupee::before,.fa-inr::before { content: "?" }
.fa-cny::before,.fa-rmb::before,.fa-yen::before,.fa-jpy::before { content: "?" }
.fa-ruble::before,.fa-rouble::before,.fa-rub::before { content: "?" }
.fa-won::before,.fa-krw::before { content: "?" }
.fa-bitcoin::before,.fa-btc::before { content: "?" }
.fa-file::before { content: "?" }
.fa-file-text::before { content: "?" }
.fa-sort-alpha-asc::before { content: "?" }
.fa-sort-alpha-desc::before { content: "?" }
.fa-sort-amount-asc::before { content: "?" }
.fa-sort-amount-desc::before { content: "?" }
.fa-sort-numeric-asc::before { content: "?" }
.fa-sort-numeric-desc::before { content: "?" }
.fa-thumbs-up::before { content: "?" }
.fa-thumbs-down::before { content: "?" }
.fa-youtube-square::before { content: "?" }
.fa-youtube::before { content: "?" }
.fa-xing::before { content: "?" }
.fa-xing-square::before { content: "?" }
.fa-youtube-play::before { content: "?" }
.fa-dropbox::before { content: "?" }
.fa-stack-overflow::before { content: "?" }
.fa-instagram::before { content: "?" }
.fa-flickr::before { content: "?" }
.fa-adn::before { content: "?" }
.fa-bitbucket::before { content: "?" }
.fa-bitbucket-square::before { content: "?" }
.fa-tumblr::before { content: "?" }
.fa-tumblr-square::before { content: "?" }
.fa-long-arrow-down::before { content: "?" }
.fa-long-arrow-up::before { content: "?" }
.fa-long-arrow-left::before { content: "?" }
.fa-long-arrow-right::before { content: "?" }
.fa-apple::before { content: "?" }
.fa-windows::before { content: "?" }
.fa-android::before { content: "?" }
.fa-linux::before { content: "?" }
.fa-dribbble::before { content: "?" }
.fa-skype::before { content: "?" }
.fa-foursquare::before { content: "?" }
.fa-trello::before { content: "?" }
.fa-female::before { content: "?" }
.fa-male::before { content: "?" }
.fa-gittip::before { content: "?" }
.fa-sun-o::before { content: "?" }
.fa-moon-o::before { content: "?" }
.fa-archive::before { content: "?" }
.fa-bug::before { content: "?" }
.fa-vk::before { content: "?" }
.fa-weibo::before { content: "?" }
.fa-renren::before { content: "?" }
.fa-pagelines::before { content: "?" }
.fa-stack-exchange::before { content: "?" }
.fa-arrow-circle-o-right::before { content: "?" }
.fa-arrow-circle-o-left::before { content: "?" }
.fa-toggle-left::before,.fa-caret-square-o-left::before { content: "?" }
.fa-dot-circle-o::before { content: "?" }
.fa-wheelchair::before { content: "?" }
.fa-vimeo-square::before { content: "?" }
.fa-turkish-lira::before,.fa-try::before { content: "?" }
.fa-plus-square-o::before { content: "?" }
.fa-space-shuttle::before { content: "?" }
.fa-slack::before { content: "?" }
.fa-envelope-square::before { content: "?" }
.fa-wordpress::before { content: "?" }
.fa-openid::before { content: "?" }
.fa-institution::before,.fa-bank::before,.fa-university::before { content: "?" }
.fa-mortar-board::before,.fa-graduation-cap::before { content: "?" }
.fa-yahoo::before { content: "?" }
.fa-google::before { content: "?" }
.fa-reddit::before { content: "?" }
.fa-reddit-square::before { content: "?" }
.fa-stumbleupon-circle::before { content: "?" }
.fa-stumbleupon::before { content: "?" }
.fa-delicious::before { content: "?" }
.fa-digg::before { content: "?" }
.fa-pied-piper::before { content: "?" }
.fa-pied-piper-alt::before { content: "?" }
.fa-drupal::before { content: "?" }
.fa-joomla::before { content: "?" }
.fa-language::before { content: "?" }
.fa-fax::before { content: "?" }
.fa-building::before { content: "?" }
.fa-child::before { content: "?" }
.fa-paw::before { content: "?" }
.fa-spoon::before { content: "?" }
.fa-cube::before { content: "?" }
.fa-cubes::before { content: "?" }
.fa-behance::before { content: "?" }
.fa-behance-square::before { content: "?" }
.fa-steam::before { content: "?" }
.fa-steam-square::before { content: "?" }
.fa-recycle::before { content: "?" }
.fa-automobile::before,.fa-car::before { content: "?" }
.fa-cab::before,.fa-taxi::before { content: "?" }
.fa-tree::before { content: "?" }
.fa-spotify::before { content: "?" }
.fa-deviantart::before { content: "?" }
.fa-soundcloud::before { content: "?" }
.fa-database::before { content: "?" }
.fa-file-pdf-o::before { content: "?" }
.fa-file-word-o::before { content: "?" }
.fa-file-excel-o::before { content: "?" }
.fa-file-powerpoint-o::before { content: "?" }
.fa-file-photo-o::before,.fa-file-picture-o::before,.fa-file-image-o::before { content: "?" }
.fa-file-zip-o::before,.fa-file-archive-o::before { content: "?" }
.fa-file-sound-o::before,.fa-file-audio-o::before { content: "?" }
.fa-file-movie-o::before,.fa-file-video-o::before { content: "?" }
.fa-file-code-o::before { content: "?" }
.fa-vine::before { content: "?" }
.fa-codepen::before { content: "?" }
.fa-jsfiddle::before { content: "?" }
.fa-life-bouy::before,.fa-life-buoy::before,.fa-life-saver::before,.fa-support::before,.fa-life-ring::before { content: "?" }
.fa-circle-o-notch::before { content: "?" }
.fa-ra::before,.fa-rebel::before { content: "?" }
.fa-ge::before,.fa-empire::before { content: "?" }
.fa-git-square::before { content: "?" }
.fa-git::before { content: "?" }
.fa-hacker-news::before { content: "?" }
.fa-tencent-weibo::before { content: "?" }
.fa-qq::before { content: "?" }
.fa-wechat::before,.fa-weixin::before { content: "?" }
.fa-send::before,.fa-paper-plane::before { content: "?" }
.fa-send-o::before,.fa-paper-plane-o::before { content: "?" }
.fa-history::before { content: "?" }
.fa-circle-thin::before { content: "?" }
.fa-header::before { content: "?" }
.fa-paragraph::before { content: "?" }
.fa-sliders::before { content: "?" }
.fa-share-alt::before { content: "?" }
.fa-share-alt-square::before { content: "?" }
.fa-bomb::before { content: "?" }
.fa-soccer-ball-o::before,.fa-futbol-o::before { content: "?" }
.fa-tty::before { content: "?" }
.fa-binoculars::before { content: "?" }
.fa-plug::before { content: "?" }
.fa-slideshare::before { content: "?" }
.fa-twitch::before { content: "?" }
.fa-yelp::before { content: "?" }
.fa-newspaper-o::before { content: "?" }
.fa-wifi::before { content: "?" }
.fa-calculator::before { content: "?" }
.fa-paypal::before { content: "?" }
.fa-google-wallet::before { content: "?" }
.fa-cc-visa::before { content: "?" }
.fa-cc-mastercard::before { content: "?" }
.fa-cc-discover::before { content: "?" }
.fa-cc-amex::before { content: "?" }
.fa-cc-paypal::before { content: "?" }
.fa-cc-stripe::before { content: "?" }
.fa-bell-slash::before { content: "?" }
.fa-bell-slash-o::before { content: "?" }
.fa-trash::before { content: "?" }
.fa-copyright::before { content: "?" }
.fa-at::before { content: "?" }
.fa-eyedropper::before { content: "?" }
.fa-paint-brush::before { content: "?" }
.fa-birthday-cake::before { content: "?" }
.fa-area-chart::before { content: "?" }
.fa-pie-chart::before { content: "?" }
.fa-line-chart::before { content: "?" }
.fa-lastfm::before { content: "?" }
.fa-lastfm-square::before { content: "?" }
.fa-toggle-off::before { content: "?" }
.fa-toggle-on::before { content: "?" }
.fa-bicycle::before { content: "?" }
.fa-bus::before { content: "?" }
.fa-ioxhost::before { content: "?" }
.fa-angellist::before { content: "?" }
.fa-cc::before { content: "?" }
.fa-shekel::before,.fa-sheqel::before,.fa-ils::before { content: "?" }
.fa-meanpath::before { content: "?" }
.modal.fade .modal-dialog { }
code { color: #000 }
pre { font-size: inherit; line-height: inherit }
label { font-weight: normal }
.border-box-sizing { }
.corner-all { }
.no-padding { padding: 0px }
.hbox { display: flex }
.hbox>* { }
.vbox { display: flex }
.vbox>* { }
.hbox.reverse,.vbox.reverse,.reverse { }
.hbox.box-flex0,.vbox.box-flex0,.box-flex0 { width: auto }
.hbox.box-flex1,.vbox.box-flex1,.box-flex1 { }
.hbox.box-flex,.vbox.box-flex,.box-flex { }
.hbox.box-flex2,.vbox.box-flex2,.box-flex2 { }
.box-group1 { }
.box-group2 { }
.hbox.start,.vbox.start,.start { }
.hbox.end,.vbox.end,.end { }
.hbox.center,.vbox.center,.center { }
.hbox.baseline,.vbox.baseline,.baseline { }
.hbox.stretch,.vbox.stretch,.stretch { }
.hbox.align-start,.vbox.align-start,.align-start { }
.hbox.align-end,.vbox.align-end,.align-end { }
.hbox.align-center,.vbox.align-center,.align-center { }
.hbox.align-baseline,.vbox.align-baseline,.align-baseline { }
.hbox.align-stretch,.vbox.align-stretch,.align-stretch { }
div.error { margin: 2em; text-align: center }
div.error>h1 { font-size: 500%; line-height: normal }
div.error>p { font-size: 200%; line-height: normal }
div.traceback-wrapper { text-align: left; max-width: 800px; margin: auto }
body { background-color: #fff; position: absolute; left: 0px; right: 0px; top: 0px; bottom: 0px; overflow: visible }
body>#header { display: none; background-color: #fff; position: relative; z-index: 100 }
body>#header #header-container { padding-bottom: 5px; padding-top: 5px }
body>#header .header-bar { width: 100%; height: 1px; background: #e7e7e7; margin-bottom: -1px }
#header-spacer { width: 100%; visibility: hidden }
#ipython_notebook { padding-left: 0px; padding-top: 1px; padding-bottom: 1px }
[dir="rtl"] #ipython_notebook { float: right !important }
#noscript { width: auto; padding-top: 16px; padding-bottom: 16px; text-align: center; font-size: 22px; color: red; font-weight: bold }
#ipython_notebook img { height: 28px }
#site { width: 100%; display: none; overflow: auto }
.ui-button .ui-button-text { padding: 0.2em 0.8em; font-size: 77% }
input.ui-button { padding: 0.3em 0.9em }
span#login_widget { float: right }
span#login_widget>.button,#logout { color: #333; background-color: #fff; border-color: #ccc }
span#login_widget>.button:focus,#logout:focus,span#login_widget>.button.focus,#logout.focus { color: #333; background-color: #e6e6e6; border-color: #8c8c8c }
span#login_widget>.button:hover,#logout:hover { color: #333; background-color: #e6e6e6; border-color: #adadad }
span#login_widget>.button:active,#logout:active,span#login_widget>.button.active,#logout.active,.open>.dropdown-togglespan#login_widget>.button,.open>.dropdown-toggle#logout { color: #333; background-color: #e6e6e6; border-color: #adadad }
span#login_widget>.button:active:hover,#logout:active:hover,span#login_widget>.button.active:hover,#logout.active:hover,.open>.dropdown-togglespan#login_widget>.button:hover,.open>.dropdown-toggle#logout:hover,span#login_widget>.button:active:focus,#logout:active:focus,span#login_widget>.button.active:focus,#logout.active:focus,.open>.dropdown-togglespan#login_widget>.button:focus,.open>.dropdown-toggle#logout:focus,span#login_widget>.button:active.focus,#logout:active.focus,span#login_widget>.button.active.focus,#logout.active.focus,.open>.dropdown-togglespan#login_widget>.button.focus,.open>.dropdown-toggle#logout.focus { color: #333; background-color: #d4d4d4; border-color: #8c8c8c }
span#login_widget>.button:active,#logout:active,span#login_widget>.button.active,#logout.active,.open>.dropdown-togglespan#login_widget>.button,.open>.dropdown-toggle#logout { background-image: none }
span#login_widget>.button.disabled:hover,#logout.disabled:hover,span#login_widget>.button[disabled]:hover,#logout[disabled]:hover,fieldset[disabled] span#login_widget>.button:hover,fieldset[disabled] #logout:hover,span#login_widget>.button.disabled:focus,#logout.disabled:focus,span#login_widget>.button[disabled]:focus,#logout[disabled]:focus,fieldset[disabled] span#login_widget>.button:focus,fieldset[disabled] #logout:focus,span#login_widget>.button.disabled.focus,#logout.disabled.focus,span#login_widget>.button[disabled].focus,#logout[disabled].focus,fieldset[disabled] span#login_widget>.button.focus,fieldset[disabled] #logout.focus { background-color: #fff; border-color: #ccc }
span#login_widget>.button .badge,#logout .badge { color: #fff; background-color: #333 }
.nav-header { text-transform: none }
#header>span { margin-top: 10px }
.modal_stretch .modal-dialog { display: flex; min-height: 80vh }
.modal_stretch .modal-dialog .modal-body { max-height: calc(100vh - 200px); overflow: auto }
.center-nav { display: inline-block; margin-bottom: -4px }
.alternate_upload { background-color: none; display: inline }
.alternate_upload.form { padding: 0; margin: 0 }
.alternate_upload input.fileinput { text-align: center; vertical-align: middle; display: inline; opacity: 0; z-index: 2; width: 12ex; margin-right: -12ex }
.alternate_upload .btn-upload { height: 22px }
[dir="rtl"] #tabs li { float: right }
ul#tabs { margin-bottom: 4px }
[dir="rtl"] ul#tabs { margin-right: 0px }
ul#tabs a { padding-top: 6px; padding-bottom: 4px }
ul.breadcrumb a:focus,ul.breadcrumb a:hover { text-decoration: none }
ul.breadcrumb i.icon-home { font-size: 16px; margin-right: 4px }
ul.breadcrumb span { color: #5e5e5e }
.list_toolbar { padding: 4px 0 4px 0; vertical-align: middle }
.list_toolbar .tree-buttons { padding-top: 1px }
[dir="rtl"] .list_toolbar .tree-buttons { float: left !important }
[dir="rtl"] .list_toolbar .pull-right { padding-top: 1px; float: left !important }
[dir="rtl"] .list_toolbar .pull-left { float: right !important }
.dynamic-buttons { padding-top: 3px; display: inline-block }
.list_toolbar [class*="span"] { min-height: 24px }
.list_header { font-weight: bold; background-color: #EEE }
.list_placeholder { font-weight: bold; padding-top: 4px; padding-bottom: 4px; padding-left: 7px; padding-right: 7px }
.list_container { margin-top: 4px; margin-bottom: 20px; border: 1px solid #ddd }
.list_container>div { border-bottom: 1px solid #ddd }
.list_container>div:hover .list-item { background-color: red }
.list_container>div:last-child { border: none }
.list_item:hover .list_item { background-color: #ddd }
.list_item a { text-decoration: none }
.list_item:hover { background-color: #fafafa }
.list_header>div,.list_item>div { padding-top: 4px; padding-bottom: 4px; padding-left: 7px; padding-right: 7px; line-height: 22px }
.list_header>div input,.list_item>div input { margin-right: 7px; margin-left: 14px; vertical-align: baseline; line-height: 22px; position: relative; top: -1px }
.list_header>div .item_link,.list_item>div .item_link { margin-left: -1px; vertical-align: baseline; line-height: 22px }
.new-file input[type="checkbox"] { visibility: hidden }
.item_name { line-height: 22px; height: 24px }
.item_icon { font-size: 14px; color: #5e5e5e; margin-right: 7px; margin-left: 7px; line-height: 22px; vertical-align: baseline }
.item_buttons { line-height: 1em; margin-left: -5px }
.item_buttons .btn,.item_buttons .btn-group,.item_buttons .input-group { float: left }
.item_buttons>.btn,.item_buttons>.btn-group,.item_buttons>.input-group { margin-left: 5px }
.item_buttons .btn { min-width: 13ex }
.item_buttons .running-indicator { padding-top: 4px; color: #5cb85c }
.item_buttons .kernel-name { padding-top: 4px; color: #5bc0de; margin-right: 7px; float: left }
.toolbar_info { height: 24px; line-height: 24px }
.list_item input:not([type="checkbox"]) { padding-top: 3px; padding-bottom: 3px; height: 22px; line-height: 14px; margin: 0px }
.highlight_text { color: blue }
#project_name { display: inline-block; padding-left: 7px; margin-left: -2px }
#project_name>.breadcrumb { padding: 0px; margin-bottom: 0px; background-color: transparent; font-weight: bold }
#tree-selector { padding-right: 0px }
[dir="rtl"] #tree-selector a { float: right }
#button-select-all { min-width: 50px }
#select-all { margin-left: 7px; margin-right: 2px }
.menu_icon { margin-right: 2px }
.tab-content .row { margin-left: 0px; margin-right: 0px }
.folder_icon::before { display: inline-block; font: normal normal normal 14px/1 FontAwesome; font-size: inherit; content: "?" }
.folder_icon::before.pull-left { margin-right: .3em }
.folder_icon::before.pull-right { margin-left: .3em }
.notebook_icon::before { display: inline-block; font: normal normal normal 14px/1 FontAwesome; font-size: inherit; content: "?"; position: relative; top: -1px }
.notebook_icon::before.pull-left { margin-right: .3em }
.notebook_icon::before.pull-right { margin-left: .3em }
.running_notebook_icon::before { display: inline-block; font: normal normal normal 14px/1 FontAwesome; font-size: inherit; content: "?"; position: relative; top: -1px; color: #5cb85c }
.running_notebook_icon::before.pull-left { margin-right: .3em }
.running_notebook_icon::before.pull-right { margin-left: .3em }
.file_icon::before { display: inline-block; font: normal normal normal 14px/1 FontAwesome; font-size: inherit; content: "?"; position: relative; top: -2px }
.file_icon::before.pull-left { margin-right: .3em }
.file_icon::before.pull-right { margin-left: .3em }
#notebook_toolbar .pull-right { padding-top: 0px; margin-right: -1px }
ul#new-menu { left: auto; right: 0 }
[dir="rtl"] #new-menu { text-align: right }
.kernel-menu-icon { padding-right: 12px; width: 24px; content: "?" }
.kernel-menu-icon::before { content: "?" }
.kernel-menu-icon-current::before { content: "?" }
#tab_content { padding-top: 20px }
#running .panel-group .panel { margin-top: 3px; margin-bottom: 1em }
#running .panel-group .panel .panel-heading { background-color: #EEE; padding-top: 4px; padding-bottom: 4px; padding-left: 7px; padding-right: 7px; line-height: 22px }
#running .panel-group .panel .panel-heading a:focus,#running .panel-group .panel .panel-heading a:hover { text-decoration: none }
#running .panel-group .panel .panel-body { padding: 0px }
#running .panel-group .panel .panel-body .list_container { margin-top: 0px; margin-bottom: 0px; border: 0px }
#running .panel-group .panel .panel-body .list_container .list_item { border-bottom: 1px solid #ddd }
#running .panel-group .panel .panel-body .list_container .list_item:last-child { border-bottom: 0px }
[dir="rtl"] #running .col-sm-8 { float: right !important }
.delete-button { display: none }
.duplicate-button { display: none }
.rename-button { display: none }
.shutdown-button { display: none }
.dynamic-instructions { display: inline-block; padding-top: 4px }
.selected-keymap i.fa { padding: 0px 5px }
.selected-keymap i.fa::before { content: "?" }
#mode-menu { overflow: auto; max-height: 20em }
.edit_app #header { }
.edit_app #menubar .navbar { margin-bottom: -1px }
.dirty-indicator { display: inline-block; font: normal normal normal 14px/1 FontAwesome; font-size: inherit; width: 20px }
.dirty-indicator.pull-left { margin-right: .3em }
.dirty-indicator.pull-right { margin-left: .3em }
.dirty-indicator-dirty { display: inline-block; font: normal normal normal 14px/1 FontAwesome; font-size: inherit; width: 20px }
.dirty-indicator-dirty.pull-left { margin-right: .3em }
.dirty-indicator-dirty.pull-right { margin-left: .3em }
.dirty-indicator-clean { display: inline-block; font: normal normal normal 14px/1 FontAwesome; font-size: inherit; width: 20px }
.dirty-indicator-clean.pull-left { margin-right: .3em }
.dirty-indicator-clean.pull-right { margin-left: .3em }
.dirty-indicator-clean::before { display: inline-block; font: normal normal normal 14px/1 FontAwesome; font-size: inherit; content: "?" }
.dirty-indicator-clean::before.pull-left { margin-right: .3em }
.dirty-indicator-clean::before.pull-right { margin-left: .3em }
#filename { font-size: 16pt; display: table; padding: 0px 5px }
#current-mode { padding-left: 5px; padding-right: 5px }
#texteditor-backdrop { padding-top: 20px; padding-bottom: 20px }
.ansibold { font-weight: bold }
.ansiblack { color: black }
.ansired { color: darkred }
.ansigreen { color: darkgreen }
.ansiyellow { color: #c4a000 }
.ansiblue { color: darkblue }
.ansipurple { color: darkviolet }
.ansicyan { color: steelblue }
.ansigray { color: gray }
.ansibgblack { background-color: black }
.ansibgred { background-color: red }
.ansibggreen { background-color: green }
.ansibgyellow { background-color: yellow }
.ansibgblue { background-color: blue }
.ansibgpurple { background-color: magenta }
.ansibgcyan { background-color: cyan }
.ansibggray { background-color: gray }
div.cell { display: flex; border-width: 1px; border-style: solid; border-color: transparent; width: 100%; padding: 5px; margin: 0px; outline: none; border-left-width: 1px; padding-left: 5px; background: linear-gradient(to right, transparent -40px, transparent 1px, transparent 1px, transparent 100%) }
div.cell.jupyter-soft-selected { border-left-color: #E3F2FD; border-left-width: 1px; padding-left: 5px; border-right-color: #E3F2FD; border-right-width: 1px; background: #E3F2FD }
div.cell.selected { border-color: #ababab; border-left-width: 0px; padding-left: 6px; background: linear-gradient(to right, #42A5F5 -40px, #42A5F5 5px, transparent 5px, transparent 100%) }
div.cell.selected.jupyter-soft-selected { border-left-width: 0; padding-left: 6px; background: linear-gradient(to right, #42A5F5 -40px, #42A5F5 7px, #E3F2FD 7px, #E3F2FD 100%) }
.edit_mode div.cell.selected { border-color: #66BB6A; border-left-width: 0px; padding-left: 6px; background: linear-gradient(to right, #66BB6A -40px, #66BB6A 5px, transparent 5px, transparent 100%) }
.prompt { min-width: 14ex; padding: 0.4em; margin: 0px; font-family: monospace; text-align: right; line-height: 1.21429em; cursor: default }
div.inner_cell { min-width: 0; display: flex }
div.input_area { border: 1px solid #cfcfcf; background: #f7f7f7; line-height: 1.21429em }
div.prompt:empty { padding-top: 0; padding-bottom: 0 }
div.unrecognized_cell { padding: 5px 5px 5px 0px; display: flex }
div.unrecognized_cell .inner_cell { padding: 5px; font-weight: bold; color: red; border: 1px solid #cfcfcf; background: #eaeaea }
div.unrecognized_cell .inner_cell a { color: inherit; text-decoration: none }
div.unrecognized_cell .inner_cell a:hover { color: inherit; text-decoration: none }
div.code_cell { }
div.input { page-break-inside: avoid; display: flex }
div.input_prompt { color: #303F9F; border-top: 1px solid transparent }
div.input_area>div.highlight { margin: 0.4em; border: none; padding: 0px; background-color: transparent }
div.input_area>div.highlight>pre { margin: 0px; border: none; padding: 0px; background-color: transparent }
.CodeMirror { line-height: 1.21429em; font-size: 14px; height: auto; background: none }
.CodeMirror-scroll { }
.CodeMirror-lines { padding: 0.4em }
.CodeMirror-linenumber { padding: 0 8px 0 4px }
.CodeMirror-gutters { }
.CodeMirror pre { padding: 0; border: 0 }
.highlight-base { color: #000 }
.highlight-variable { color: #000 }
.highlight-variable-2 { color: #1a1a1a }
.highlight-variable-3 { color: #333333 }
.highlight-string { color: #BA2121 }
.highlight-comment { color: #408080; font-style: italic }
.highlight-number { color: #080 }
.highlight-atom { color: #88F }
.highlight-keyword { color: #008000; font-weight: bold }
.highlight-builtin { color: #008000 }
.highlight-error { color: #f00 }
.highlight-operator { color: #AA22FF; font-weight: bold }
.highlight-meta { color: #AA22FF }
.highlight-def { color: #00f }
.highlight-string-2 { color: #f50 }
.highlight-qualifier { color: #555 }
.highlight-bracket { color: #997 }
.highlight-tag { color: #170 }
.highlight-attribute { color: #00c }
.highlight-header { color: blue }
.highlight-quote { color: #090 }
.highlight-link { color: #00c }
.cm-s-ipython span.cm-keyword { color: #008000; font-weight: bold }
.cm-s-ipython span.cm-atom { color: #88F }
.cm-s-ipython span.cm-number { color: #080 }
.cm-s-ipython span.cm-def { color: #00f }
.cm-s-ipython span.cm-variable { color: #000 }
.cm-s-ipython span.cm-operator { color: #AA22FF; font-weight: bold }
.cm-s-ipython span.cm-variable-2 { color: #1a1a1a }
.cm-s-ipython span.cm-variable-3 { color: #333333 }
.cm-s-ipython span.cm-comment { color: #408080; font-style: italic }
.cm-s-ipython span.cm-string { color: #BA2121 }
.cm-s-ipython span.cm-string-2 { color: #f50 }
.cm-s-ipython span.cm-meta { color: #AA22FF }
.cm-s-ipython span.cm-qualifier { color: #555 }
.cm-s-ipython span.cm-builtin { color: #008000 }
.cm-s-ipython span.cm-bracket { color: #997 }
.cm-s-ipython span.cm-tag { color: #170 }
.cm-s-ipython span.cm-attribute { color: #00c }
.cm-s-ipython span.cm-header { color: blue }
.cm-s-ipython span.cm-quote { color: #090 }
.cm-s-ipython span.cm-link { color: #00c }
.cm-s-ipython span.cm-error { color: #f00 }
.cm-s-ipython span.cm-tab { background: url(""); background-position: right; background-repeat: no-repeat }
div.output_wrapper { position: relative; display: flex; z-index: 1 }
div.output_scroll { height: 24em; width: 100%; overflow: auto; display: block }
div.output_collapsed { margin: 0px; padding: 0px; display: flex }
div.out_prompt_overlay { height: 100%; padding: 0px 0.4em; position: absolute }
div.out_prompt_overlay:hover { background: rgba(240, 240, 240, 0.5) }
div.output_prompt { color: #D84315 }
div.output_area { padding: 0px; page-break-inside: avoid; display: flex }
div.output_area .MathJax_Display { text-align: left !important }
div.output_area .rendered_html table { margin-left: 0; margin-right: 0 }
div.output_area .rendered_html img { margin-left: 0; margin-right: 0 }
div.output_area img,div.output_area svg { max-width: 100%; height: auto }
div.output_area img.unconfined,div.output_area svg.unconfined { max-width: none }
.output { display: flex }
div.output_area pre { margin: 0; padding: 0; border: 0; vertical-align: baseline; color: black; background-color: transparent }
div.output_subarea { padding: 0.4em; max-width: calc(100% - 14ex) }
div.output_scroll div.output_subarea { }
div.output_text { text-align: left; color: #000; line-height: 1.21429em }
div.output_stderr { background: #fdd }
div.output_latex { text-align: left }
div.output_javascript:empty { padding: 0 }
.js-error { color: darkred }
div.raw_input_container { line-height: 1.21429em; padding-top: 5px }
pre.raw_input_prompt { }
input.raw_input { font-family: monospace; font-size: inherit; color: inherit; width: auto; vertical-align: baseline; padding: 0em 0.25em; margin: 0em 0.25em }
input.raw_input:focus { }
p.p-space { margin-bottom: 10px }
div.output_unrecognized { padding: 5px; font-weight: bold; color: red }
div.output_unrecognized a { color: inherit; text-decoration: none }
div.output_unrecognized a:hover { color: inherit; text-decoration: none }
.rendered_html { color: #000 }
.rendered_html em { font-style: italic }
.rendered_html strong { font-weight: bold }
.rendered_html u { text-decoration: underline }
.rendered_html :link { text-decoration: underline }
.rendered_html :visited { text-decoration: underline }
.rendered_html h1 { font-size: 185.7%; margin: 1.08em 0 0 0; font-weight: bold; line-height: 1.0 }
.rendered_html h2 { font-size: 157.1%; margin: 1.27em 0 0 0; font-weight: bold; line-height: 1.0 }
.rendered_html h3 { font-size: 128.6%; margin: 1.55em 0 0 0; font-weight: bold; line-height: 1.0 }
.rendered_html h4 { font-size: 100%; margin: 2em 0 0 0; font-weight: bold; line-height: 1.0 }
.rendered_html h5 { font-size: 100%; margin: 2em 0 0 0; font-weight: bold; line-height: 1.0; font-style: italic }
.rendered_html h6 { font-size: 100%; margin: 2em 0 0 0; font-weight: bold; line-height: 1.0; font-style: italic }
.rendered_html h1:first-child { margin-top: 0.538em }
.rendered_html h2:first-child { margin-top: 0.636em }
.rendered_html h3:first-child { margin-top: 0.777em }
.rendered_html h4:first-child { margin-top: 1em }
.rendered_html h5:first-child { margin-top: 1em }
.rendered_html h6:first-child { margin-top: 1em }
.rendered_html ul { list-style: disc; margin: 0em 2em; padding-left: 0px }
.rendered_html ul ul { list-style: square; margin: 0em 2em }
.rendered_html ul ul ul { list-style: circle; margin: 0em 2em }
.rendered_html ol { list-style: decimal; margin: 0em 2em; padding-left: 0px }
.rendered_html ol ol { list-style: upper-alpha; margin: 0em 2em }
.rendered_html ol ol ol { list-style: lower-alpha; margin: 0em 2em }
.rendered_html ol ol ol ol { list-style: lower-roman; margin: 0em 2em }
.rendered_html ol ol ol ol ol { list-style: decimal; margin: 0em 2em }
.rendered_html *+ul { margin-top: 1em }
.rendered_html *+ol { margin-top: 1em }
.rendered_html hr { color: black; background-color: black }
.rendered_html pre { margin: 1em 2em }
.rendered_html pre,.rendered_html code { border: 0; background-color: #fff; color: #000; font-size: 100%; padding: 0px }
.rendered_html blockquote { margin: 1em 2em }
.rendered_html table { margin-left: auto; margin-right: auto; border: 1px solid black; border-collapse: collapse }
.rendered_html tr,.rendered_html th,.rendered_html td { border: 1px solid black; border-collapse: collapse; margin: 1em 2em }
.rendered_html td,.rendered_html th { text-align: left; vertical-align: middle; padding: 4px }
.rendered_html th { font-weight: bold }
.rendered_html *+table { margin-top: 1em }
.rendered_html p { text-align: left }
.rendered_html *+p { margin-top: 1em }
.rendered_html img { display: block; margin-left: auto; margin-right: auto }
.rendered_html *+img { margin-top: 1em }
.rendered_html img,.rendered_html svg { max-width: 100%; height: auto }
.rendered_html img.unconfined,.rendered_html svg.unconfined { max-width: none }
div.text_cell { display: flex }
div.text_cell_render { outline: none; width: inherit; border-style: none; padding: 0.5em 0.5em 0.5em 0.4em; color: #000 }
a.anchor-link:link { text-decoration: none; padding: 0px 20px; visibility: hidden }
h1:hover .anchor-link,h2:hover .anchor-link,h3:hover .anchor-link,h4:hover .anchor-link,h5:hover .anchor-link,h6:hover .anchor-link { visibility: visible }
.text_cell.rendered .input_area { display: none }
.text_cell.rendered .rendered_html { }
.text_cell.unrendered .text_cell_render { display: none }
.cm-header-1,.cm-header-2,.cm-header-3,.cm-header-4,.cm-header-5,.cm-header-6 { font-weight: bold; font-family: "Helvetica Neue", Helvetica, Arial, sans-serif }
.cm-header-1 { font-size: 185.7% }
.cm-header-2 { font-size: 157.1% }
.cm-header-3 { font-size: 128.6% }
.cm-header-4 { font-size: 110% }
.cm-header-5 { font-size: 100%; font-style: italic }
.cm-header-6 { font-size: 100%; font-style: italic }
#ipython-main-app { height: 100% }
div#notebook_panel { margin: 0px; padding: 0px; height: 100% }
div#notebook { font-size: 14px; line-height: 20px; width: 100%; padding-top: 20px; margin: 0px; outline: none; min-height: 100% }
div.ui-widget-content { border: 1px solid #ababab; outline: none }
pre.dialog { background-color: #f7f7f7; border: 1px solid #ddd; padding: 0.4em; padding-left: 2em }
p.dialog { padding: 0.2em }
pre,code,kbd,samp { white-space: pre-wrap }
#fonttest { font-family: monospace }
p { margin-bottom: 0 }
.end_space { min-height: 100px }
.notebook_app>#header { }
kbd { border-style: solid; border-width: 1px; margin: 2px; padding-left: 2px; padding-right: 2px; padding-top: 1px; padding-bottom: 1px }
.celltoolbar { border: thin solid #CFCFCF; border-bottom: none; background: #EEE; width: 100%; height: 29px; padding-right: 4px; display: -webkit-flex }
.ctb_hideshow { display: none; vertical-align: bottom }
.ctb_global_show .ctb_show.ctb_hideshow { display: block }
.ctb_global_show .ctb_show+.input_area,.ctb_global_show .ctb_show+div.text_cell_input,.ctb_global_show .ctb_show~div.text_cell_render { }
.ctb_global_show .ctb_show~div.text_cell_render { border: 1px solid #cfcfcf }
.celltoolbar { font-size: 87%; padding-top: 3px }
.celltoolbar select { color: #555555; background-color: #fff; background-image: none; border: 1px solid #ccc; line-height: 1.5; width: inherit; font-size: inherit; height: 22px; padding: 0px; display: inline-block }
.celltoolbar select:focus { border-color: #66afe9; outline: 0 }
.celltoolbar select::-moz-placeholder { color: #999; opacity: 1 }
.celltoolbar select:-ms-input-placeholder { color: #999 }
.celltoolbar select::-webkit-input-placeholder { color: #999 }
.celltoolbar select::-ms-expand { border: 0; background-color: transparent }
.celltoolbar select[disabled],.celltoolbar select[readonly],fieldset[disabled] .celltoolbar select { background-color: #eeeeee; opacity: 1 }
.celltoolbar select[disabled],fieldset[disabled] .celltoolbar select { cursor: not-allowed }
textarea.celltoolbar select { height: auto }
select.celltoolbar select { height: 30px; line-height: 30px }
textarea.celltoolbar select,select[multiple].celltoolbar select { height: auto }
.celltoolbar label { margin-left: 5px; margin-right: 5px }
.completions { position: absolute; z-index: 110; overflow: hidden; border: 1px solid #ababab; line-height: 1 }
.completions select { background: white; outline: none; border: none; padding: 0px; margin: 0px; overflow: auto; font-family: monospace; font-size: 110%; color: #000; width: auto }
.completions select option.context { color: #286090 }
#kernel_logo_widget { float: right }
#kernel_logo_widget .current_kernel_logo { display: none; margin-top: -1px; margin-bottom: -1px; width: 32px; height: 32px }
#menubar { margin-top: 1px }
#menubar .navbar { border-top: 1px; margin-bottom: 0px }
#menubar .navbar-toggle { float: left; padding-top: 7px; padding-bottom: 7px; border: none }
#menubar .navbar-collapse { clear: left }
.nav-wrapper { border-bottom: 1px solid #e7e7e7 }
i.menu-icon { padding-top: 4px }
ul#help_menu li a { overflow: hidden; padding-right: 2.2em }
ul#help_menu li a i { margin-right: -1.2em }
.dropdown-submenu { position: relative }
.dropdown-submenu>.dropdown-menu { top: 0; left: 100%; margin-top: -6px; margin-left: -1px }
.dropdown-submenu:hover>.dropdown-menu { display: block }
.dropdown-submenu>a::after { font: normal normal normal 14px/1 FontAwesome; font-size: inherit; display: block; content: "?"; float: right; color: #333333; margin-top: 2px; margin-right: -10px }
.dropdown-submenu>a::after.pull-left { margin-right: .3em }
.dropdown-submenu>a::after.pull-right { margin-left: .3em }
.dropdown-submenu:hover>a::after { color: #262626 }
.dropdown-submenu.pull-left { float: none }
.dropdown-submenu.pull-left>.dropdown-menu { left: -100%; margin-left: 10px }
#notification_area { float: right; z-index: 10 }
.indicator_area { float: right; color: #777; margin-left: 5px; margin-right: 5px; z-index: 10; text-align: center; width: auto }
#kernel_indicator { float: right; color: #777; margin-left: 5px; margin-right: 5px; z-index: 10; text-align: center; width: auto; border-left: 1px solid }
#kernel_indicator .kernel_indicator_name { padding-left: 5px; padding-right: 5px }
#modal_indicator { float: right; color: #777; margin-left: 5px; margin-right: 5px; z-index: 10; text-align: center; width: auto }
#readonly-indicator { float: right; color: #777; z-index: 10; text-align: center; width: auto; margin-top: 2px; margin-bottom: 0px; margin-left: 0px; margin-right: 0px; display: none }
.modal_indicator::before { width: 1.28571429em; text-align: center }
.edit_mode .modal_indicator::before { display: inline-block; font: normal normal normal 14px/1 FontAwesome; font-size: inherit; content: "?" }
.edit_mode .modal_indicator::before.pull-left { margin-right: .3em }
.edit_mode .modal_indicator::before.pull-right { margin-left: .3em }
.command_mode .modal_indicator::before { display: inline-block; font: normal normal normal 14px/1 FontAwesome; font-size: inherit; content: " " }
.command_mode .modal_indicator::before.pull-left { margin-right: .3em }
.command_mode .modal_indicator::before.pull-right { margin-left: .3em }
.kernel_idle_icon::before { display: inline-block; font: normal normal normal 14px/1 FontAwesome; font-size: inherit; content: "?" }
.kernel_idle_icon::before.pull-left { margin-right: .3em }
.kernel_idle_icon::before.pull-right { margin-left: .3em }
.kernel_busy_icon::before { display: inline-block; font: normal normal normal 14px/1 FontAwesome; font-size: inherit; content: "?" }
.kernel_busy_icon::before.pull-left { margin-right: .3em }
.kernel_busy_icon::before.pull-right { margin-left: .3em }
.kernel_dead_icon::before { display: inline-block; font: normal normal normal 14px/1 FontAwesome; font-size: inherit; content: "?" }
.kernel_dead_icon::before.pull-left { margin-right: .3em }
.kernel_dead_icon::before.pull-right { margin-left: .3em }
.kernel_disconnected_icon::before { display: inline-block; font: normal normal normal 14px/1 FontAwesome; font-size: inherit; content: "?" }
.kernel_disconnected_icon::before.pull-left { margin-right: .3em }
.kernel_disconnected_icon::before.pull-right { margin-left: .3em }
.notification_widget { z-index: 10; background: rgba(240, 240, 240, 0.5); margin-right: 4px; color: #333; background-color: #fff; border-color: #ccc }
.notification_widget:focus,.notification_widget.focus { color: #333; background-color: #e6e6e6; border-color: #8c8c8c }
.notification_widget:hover { color: #333; background-color: #e6e6e6; border-color: #adadad }
.notification_widget:active,.notification_widget.active,.open>.dropdown-toggle.notification_widget { color: #333; background-color: #e6e6e6; border-color: #adadad }
.notification_widget:active:hover,.notification_widget.active:hover,.open>.dropdown-toggle.notification_widget:hover,.notification_widget:active:focus,.notification_widget.active:focus,.open>.dropdown-toggle.notification_widget:focus,.notification_widget:active.focus,.notification_widget.active.focus,.open>.dropdown-toggle.notification_widget.focus { color: #333; background-color: #d4d4d4; border-color: #8c8c8c }
.notification_widget:active,.notification_widget.active,.open>.dropdown-toggle.notification_widget { background-image: none }
.notification_widget.disabled:hover,.notification_widget[disabled]:hover,fieldset[disabled] .notification_widget:hover,.notification_widget.disabled:focus,.notification_widget[disabled]:focus,fieldset[disabled] .notification_widget:focus,.notification_widget.disabled.focus,.notification_widget[disabled].focus,fieldset[disabled] .notification_widget.focus { background-color: #fff; border-color: #ccc }
.notification_widget .badge { color: #fff; background-color: #333 }
.notification_widget.warning { color: #fff; background-color: #f0ad4e; border-color: #eea236 }
.notification_widget.warning:focus,.notification_widget.warning.focus { color: #fff; background-color: #ec971f; border-color: #985f0d }
.notification_widget.warning:hover { color: #fff; background-color: #ec971f; border-color: #d58512 }
.notification_widget.warning:active,.notification_widget.warning.active,.open>.dropdown-toggle.notification_widget.warning { color: #fff; background-color: #ec971f; border-color: #d58512 }
.notification_widget.warning:active:hover,.notification_widget.warning.active:hover,.open>.dropdown-toggle.notification_widget.warning:hover,.notification_widget.warning:active:focus,.notification_widget.warning.active:focus,.open>.dropdown-toggle.notification_widget.warning:focus,.notification_widget.warning:active.focus,.notification_widget.warning.active.focus,.open>.dropdown-toggle.notification_widget.warning.focus { color: #fff; background-color: #d58512; border-color: #985f0d }
.notification_widget.warning:active,.notification_widget.warning.active,.open>.dropdown-toggle.notification_widget.warning { background-image: none }
.notification_widget.warning.disabled:hover,.notification_widget.warning[disabled]:hover,fieldset[disabled] .notification_widget.warning:hover,.notification_widget.warning.disabled:focus,.notification_widget.warning[disabled]:focus,fieldset[disabled] .notification_widget.warning:focus,.notification_widget.warning.disabled.focus,.notification_widget.warning[disabled].focus,fieldset[disabled] .notification_widget.warning.focus { background-color: #f0ad4e; border-color: #eea236 }
.notification_widget.warning .badge { color: #f0ad4e; background-color: #fff }
.notification_widget.success { color: #fff; background-color: #5cb85c; border-color: #4cae4c }
.notification_widget.success:focus,.notification_widget.success.focus { color: #fff; background-color: #449d44; border-color: #255625 }
.notification_widget.success:hover { color: #fff; background-color: #449d44; border-color: #398439 }
.notification_widget.success:active,.notification_widget.success.active,.open>.dropdown-toggle.notification_widget.success { color: #fff; background-color: #449d44; border-color: #398439 }
.notification_widget.success:active:hover,.notification_widget.success.active:hover,.open>.dropdown-toggle.notification_widget.success:hover,.notification_widget.success:active:focus,.notification_widget.success.active:focus,.open>.dropdown-toggle.notification_widget.success:focus,.notification_widget.success:active.focus,.notification_widget.success.active.focus,.open>.dropdown-toggle.notification_widget.success.focus { color: #fff; background-color: #398439; border-color: #255625 }
.notification_widget.success:active,.notification_widget.success.active,.open>.dropdown-toggle.notification_widget.success { background-image: none }
.notification_widget.success.disabled:hover,.notification_widget.success[disabled]:hover,fieldset[disabled] .notification_widget.success:hover,.notification_widget.success.disabled:focus,.notification_widget.success[disabled]:focus,fieldset[disabled] .notification_widget.success:focus,.notification_widget.success.disabled.focus,.notification_widget.success[disabled].focus,fieldset[disabled] .notification_widget.success.focus { background-color: #5cb85c; border-color: #4cae4c }
.notification_widget.success .badge { color: #5cb85c; background-color: #fff }
.notification_widget.info { color: #fff; background-color: #5bc0de; border-color: #46b8da }
.notification_widget.info:focus,.notification_widget.info.focus { color: #fff; background-color: #31b0d5; border-color: #1b6d85 }
.notification_widget.info:hover { color: #fff; background-color: #31b0d5; border-color: #269abc }
.notification_widget.info:active,.notification_widget.info.active,.open>.dropdown-toggle.notification_widget.info { color: #fff; background-color: #31b0d5; border-color: #269abc }
.notification_widget.info:active:hover,.notification_widget.info.active:hover,.open>.dropdown-toggle.notification_widget.info:hover,.notification_widget.info:active:focus,.notification_widget.info.active:focus,.open>.dropdown-toggle.notification_widget.info:focus,.notification_widget.info:active.focus,.notification_widget.info.active.focus,.open>.dropdown-toggle.notification_widget.info.focus { color: #fff; background-color: #269abc; border-color: #1b6d85 }
.notification_widget.info:active,.notification_widget.info.active,.open>.dropdown-toggle.notification_widget.info { background-image: none }
.notification_widget.info.disabled:hover,.notification_widget.info[disabled]:hover,fieldset[disabled] .notification_widget.info:hover,.notification_widget.info.disabled:focus,.notification_widget.info[disabled]:focus,fieldset[disabled] .notification_widget.info:focus,.notification_widget.info.disabled.focus,.notification_widget.info[disabled].focus,fieldset[disabled] .notification_widget.info.focus { background-color: #5bc0de; border-color: #46b8da }
.notification_widget.info .badge { color: #5bc0de; background-color: #fff }
.notification_widget.danger { color: #fff; background-color: #d9534f; border-color: #d43f3a }
.notification_widget.danger:focus,.notification_widget.danger.focus { color: #fff; background-color: #c9302c; border-color: #761c19 }
.notification_widget.danger:hover { color: #fff; background-color: #c9302c; border-color: #ac2925 }
.notification_widget.danger:active,.notification_widget.danger.active,.open>.dropdown-toggle.notification_widget.danger { color: #fff; background-color: #c9302c; border-color: #ac2925 }
.notification_widget.danger:active:hover,.notification_widget.danger.active:hover,.open>.dropdown-toggle.notification_widget.danger:hover,.notification_widget.danger:active:focus,.notification_widget.danger.active:focus,.open>.dropdown-toggle.notification_widget.danger:focus,.notification_widget.danger:active.focus,.notification_widget.danger.active.focus,.open>.dropdown-toggle.notification_widget.danger.focus { color: #fff; background-color: #ac2925; border-color: #761c19 }
.notification_widget.danger:active,.notification_widget.danger.active,.open>.dropdown-toggle.notification_widget.danger { background-image: none }
.notification_widget.danger.disabled:hover,.notification_widget.danger[disabled]:hover,fieldset[disabled] .notification_widget.danger:hover,.notification_widget.danger.disabled:focus,.notification_widget.danger[disabled]:focus,fieldset[disabled] .notification_widget.danger:focus,.notification_widget.danger.disabled.focus,.notification_widget.danger[disabled].focus,fieldset[disabled] .notification_widget.danger.focus { background-color: #d9534f; border-color: #d43f3a }
.notification_widget.danger .badge { color: #d9534f; background-color: #fff }
div#pager { background-color: #fff; font-size: 14px; line-height: 20px; overflow: hidden; display: none; position: fixed; bottom: 0px; width: 100%; max-height: 50%; padding-top: 8px; z-index: 100; top: auto !important }
div#pager pre { line-height: 1.21429em; color: #000; background-color: #f7f7f7; padding: 0.4em }
div#pager #pager-button-area { position: absolute; top: 8px; right: 20px }
div#pager #pager-contents { position: relative; overflow: auto; width: 100%; height: 100% }
div#pager #pager-contents #pager-container { position: relative; padding: 15px 0px }
div#pager .ui-resizable-handle { top: 0px; height: 8px; background: #f7f7f7; border-top: 1px solid #cfcfcf; border-bottom: 1px solid #cfcfcf }
div#pager .ui-resizable-handle::after { content: ""; top: 2px; left: 50%; height: 3px; width: 30px; margin-left: -15px; position: absolute; border-top: 1px solid #cfcfcf }
.quickhelp { display: flex; line-height: 1.8em }
.shortcut_key { display: inline-block; width: 21ex; text-align: right; font-family: monospace }
.shortcut_descr { display: inline-block }
span.save_widget { margin-top: 6px }
span.save_widget span.filename { height: 1em; line-height: 1em; padding: 3px; margin-left: 16px; border: none; font-size: 146.5% }
span.save_widget span.filename:hover { background-color: #e6e6e6 }
span.checkpoint_status,span.autosave_status { font-size: small }
.toolbar { padding: 0px; margin-left: -5px; margin-top: 2px; margin-bottom: 5px }
.toolbar select,.toolbar label { width: auto; vertical-align: middle; margin-bottom: 0px; display: inline; font-size: 92%; margin-left: 0.3em; margin-right: 0.3em; padding: 0px; padding-top: 3px }
.toolbar .btn { padding: 2px 8px }
.toolbar .btn-group { margin-top: 0px; margin-left: 5px }
#maintoolbar { margin-bottom: -3px; margin-top: -8px; border: 0px; min-height: 27px; margin-left: 0px; padding-top: 11px; padding-bottom: 3px }
#maintoolbar .navbar-text { float: none; vertical-align: middle; text-align: right; margin-left: 5px; margin-right: 0px; margin-top: 0px }
.select-xs { height: 24px }
.pulse,.dropdown-menu>li>a.pulse,li.pulse>a.dropdown-toggle,li.pulse.open>a.dropdown-toggle { background-color: #F37626; color: white }
.bigtooltip { overflow: auto; height: 200px }
.smalltooltip { overflow: hidden; height: 80px }
.tooltipbuttons { position: absolute; padding-right: 15px; top: 0px; right: 0px }
.tooltiptext { padding-right: 30px }
.ipython_tooltip { max-width: 700px; vertical-align: middle; background-color: #f7f7f7; overflow: visible; border: #ababab 1px solid; outline: none; padding: 3px; margin: 0px; padding-left: 7px; font-family: monospace; min-height: 50px; position: absolute; z-index: 1000 }
.ipython_tooltip a { float: right }
.ipython_tooltip .tooltiptext pre { border: 0; font-size: 100%; background-color: #f7f7f7 }
.pretooltiparrow { left: 0px; margin: 0px; top: -16px; width: 40px; height: 16px; overflow: hidden; position: absolute }
.pretooltiparrow::before { background-color: #f7f7f7; border: 1px #ababab solid; z-index: 11; content: ""; position: absolute; left: 15px; top: 10px; width: 25px; height: 25px }
ul.typeahead-list i { margin-left: -10px; width: 18px }
ul.typeahead-list { max-height: 80vh; overflow: auto }
ul.typeahead-list>li>a { white-space: normal }
.cmd-palette .modal-body { padding: 7px }
.cmd-palette form { background: white }
.cmd-palette input { outline: none }
.no-shortcut { display: none }
.command-shortcut::before { content: "(command)"; padding-right: 3px; color: #777777 }
.edit-shortcut::before { content: "(edit)"; padding-right: 3px; color: #777777 }
#find-and-replace #replace-preview .match,#find-and-replace #replace-preview .insert { background-color: #BBDEFB; border-color: #90CAF9; border-style: solid; border-width: 1px }
#find-and-replace #replace-preview .replace .match { background-color: #FFCDD2; border-color: #EF9A9A }
#find-and-replace #replace-preview .replace .insert { background-color: #C8E6C9; border-color: #A5D6A7 }
#find-and-replace #replace-preview { max-height: 60vh; overflow: auto }
#find-and-replace #replace-preview pre { padding: 5px 10px }
.terminal-app { background: #EEE }
.terminal-app #header { background: #fff }
.terminal-app .terminal { width: 100%; float: left; font-family: monospace; color: white; background: black; padding: 0.4em }
.terminal-app .terminal,.terminal-app .terminal dummy-screen { line-height: 1em; font-size: 14px }
.terminal-app .terminal .xterm-rows { padding: 10px }
.terminal-app .terminal-cursor { color: black; background: white }
.terminal-app #terminado-container { margin-top: 20px }
.highlight .hll { background-color: #ffffcc }
.highlight { background: #f8f8f8 }
.highlight .c { color: #408080; font-style: italic }
.highlight .err { border: 1px solid #FF0000 }
.highlight .k { color: #008000; font-weight: bold }
.highlight .o { color: #666666 }
.highlight .ch { color: #408080; font-style: italic }
.highlight .cm { color: #408080; font-style: italic }
.highlight .cp { color: #BC7A00 }
.highlight .cpf { color: #408080; font-style: italic }
.highlight .c1 { color: #408080; font-style: italic }
.highlight .cs { color: #408080; font-style: italic }
.highlight .gd { color: #A00000 }
.highlight .ge { font-style: italic }
.highlight .gr { color: #FF0000 }
.highlight .gh { color: #000080; font-weight: bold }
.highlight .gi { color: #00A000 }
.highlight .go { color: #888888 }
.highlight .gp { color: #000080; font-weight: bold }
.highlight .gs { font-weight: bold }
.highlight .gu { color: #800080; font-weight: bold }
.highlight .gt { color: #0044DD }
.highlight .kc { color: #008000; font-weight: bold }
.highlight .kd { color: #008000; font-weight: bold }
.highlight .kn { color: #008000; font-weight: bold }
.highlight .kp { color: #008000 }
.highlight .kr { color: #008000; font-weight: bold }
.highlight .kt { color: #B00040 }
.highlight .m { color: #666666 }
.highlight .s { color: #BA2121 }
.highlight .na { color: #7D9029 }
.highlight .nb { color: #008000 }
.highlight .nc { color: #0000FF; font-weight: bold }
.highlight .no { color: #880000 }
.highlight .nd { color: #AA22FF }
.highlight .ni { color: #999999; font-weight: bold }
.highlight .ne { color: #D2413A; font-weight: bold }
.highlight .nf { color: #0000FF }
.highlight .nl { color: #A0A000 }
.highlight .nn { color: #0000FF; font-weight: bold }
.highlight .nt { color: #008000; font-weight: bold }
.highlight .nv { color: #19177C }
.highlight .ow { color: #AA22FF; font-weight: bold }
.highlight .w { color: #bbbbbb }
.highlight .mb { color: #666666 }
.highlight .mf { color: #666666 }
.highlight .mh { color: #666666 }
.highlight .mi { color: #666666 }
.highlight .mo { color: #666666 }
.highlight .sa { color: #BA2121 }
.highlight .sb { color: #BA2121 }
.highlight .sc { color: #BA2121 }
.highlight .dl { color: #BA2121 }
.highlight .sd { color: #BA2121; font-style: italic }
.highlight .s2 { color: #BA2121 }
.highlight .se { color: #BB6622; font-weight: bold }
.highlight .sh { color: #BA2121 }
.highlight .si { color: #BB6688; font-weight: bold }
.highlight .sx { color: #008000 }
.highlight .sr { color: #BB6688 }
.highlight .s1 { color: #BA2121 }
.highlight .ss { color: #19177C }
.highlight .bp { color: #008000 }
.highlight .fm { color: #0000FF }
.highlight .vc { color: #19177C }
.highlight .vg { color: #19177C }
.highlight .vi { color: #19177C }
.highlight .vm { color: #19177C }
.highlight .il { color: #666666 }
.ansi-black-fg { color: #3E424D }
.ansi-black-bg { background-color: #3E424D }
.ansi-black-intense-fg { color: #282C36 }
.ansi-black-intense-bg { background-color: #282C36 }
.ansi-red-fg { color: #E75C58 }
.ansi-red-bg { background-color: #E75C58 }
.ansi-red-intense-fg { color: #B22B31 }
.ansi-red-intense-bg { background-color: #B22B31 }
.ansi-green-fg { color: #00A250 }
.ansi-green-bg { background-color: #00A250 }
.ansi-green-intense-fg { color: #007427 }
.ansi-green-intense-bg { background-color: #007427 }
.ansi-yellow-fg { color: #DDB62B }
.ansi-yellow-bg { background-color: #DDB62B }
.ansi-yellow-intense-fg { color: #B27D12 }
.ansi-yellow-intense-bg { background-color: #B27D12 }
.ansi-blue-fg { color: #208FFB }
.ansi-blue-bg { background-color: #208FFB }
.ansi-blue-intense-fg { color: #0065CA }
.ansi-blue-intense-bg { background-color: #0065CA }
.ansi-magenta-fg { color: #D160C4 }
.ansi-magenta-bg { background-color: #D160C4 }
.ansi-magenta-intense-fg { color: #A03196 }
.ansi-magenta-intense-bg { background-color: #A03196 }
.ansi-cyan-fg { color: #60C6C8 }
.ansi-cyan-bg { background-color: #60C6C8 }
.ansi-cyan-intense-fg { color: #258F8F }
.ansi-cyan-intense-bg { background-color: #258F8F }
.ansi-white-fg { color: #C5C1B4 }
.ansi-white-bg { background-color: #C5C1B4 }
.ansi-white-intense-fg { color: #A1A6B2 }
.ansi-white-intense-bg { background-color: #A1A6B2 }
.ansi-bold { font-weight: bold }
body { overflow: visible; padding: 8px }
div#notebook { overflow: visible; border-top: none }
In [1]:
# from http://pandas.pydata.org/pandas-docs/stable/indexing.html # pandas 0.22.0
In [2]:
import pandas as pd import numpy as np
In [3]:
""" 尽量利用pandas提供的专用索引方式,而不是python通用的切片方式。 三种主要的索引方式:indexers .loc label based 基于标签, 可以是标签名,可以是布尔值,可以是一元函数 .iloc integer psition based 基于整数位置(from 0 to length-1 of the axis),和python切片类似 [] """ """ Object Type Selection Return Value Type ------------------------------------------------------------ Series series[label] scalar value DataFrame frame[colname] Series corresponding to colname Panel panel[itemname] DataFrame corresponding to the itemname """
Out[3]:
‘\n尽量利用pandas提供的专用索引方式,而不是python通用的切片方式。\n三种主要的索引方式:indexers\n.loc label based 基于标签, 可以是标签名,可以是布尔值,可以是一元函数\n.iloc integer psition based 基于整数位置(from 0 to length-1 of the axis),和python切片类似\n[]\n\n‘
Out[3]:
‘\nObject Type \t\tIndexers\nSeries \t\t\t\ts.loc[indexer]\nDataFrame \t\t\tdf.loc[row_indexer,column_indexer]\nPanel \t\t\t\tp.loc[item_indexer,major_indexer,minor_indexer]\n‘
In [5]:
# Here we construct a simple time series data set to use for illustrating the indexing functionality # 构造时间序列,举例说明索引的功能 dates = pd.date_range(‘1/1/2000‘, periods=8) dates df = pd.DataFrame(np.random.randn(8, 4), index=dates, columns=[‘A‘, ‘B‘, ‘C‘, ‘D‘]) df
Out[5]:
DatetimeIndex([‘2000-01-01‘, ‘2000-01-02‘, ‘2000-01-03‘, ‘2000-01-04‘, ‘2000-01-05‘, ‘2000-01-06‘, ‘2000-01-07‘, ‘2000-01-08‘], dtype=‘datetime64[ns]‘, freq=‘D‘)
Out[5]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | |
---|---|---|---|---|
2000-01-01 | 0.136628 | 0.324097 | 0.856313 | -0.145259 |
2000-01-02 | 0.113819 | -0.718630 | 0.016217 | -1.571263 |
2000-01-03 | -0.603598 | -0.143643 | -1.143063 | -0.425266 |
2000-01-04 | -0.486200 | -0.136663 | -2.016020 | -0.815514 |
2000-01-05 | 0.835318 | 1.036607 | -0.502919 | 0.878680 |
2000-01-06 | -2.376205 | 0.362577 | -0.484754 | -0.478711 |
2000-01-07 | 0.193371 | 1.330468 | 0.544160 | 1.030900 |
2000-01-08 | 0.476533 | -0.476653 | -0.434356 | 0.744500 |
In [8]:
panel = pd.Panel({‘one‘ : df, ‘two‘ : df - df.mean()}) # 多维表格 panel panel[‘one‘] panel[‘two‘]
Out[8]:
<class ‘pandas.core.panel.Panel‘> Dimensions: 2 (items) x 8 (major_axis) x 4 (minor_axis) Items axis: one to two Major_axis axis: 2000-01-01 00:00:00 to 2000-01-08 00:00:00 Minor_axis axis: A to D
Out[8]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | |
---|---|---|---|---|
2000-01-01 | 0.136628 | 0.324097 | 0.856313 | -0.145259 |
2000-01-02 | 0.113819 | -0.718630 | 0.016217 | -1.571263 |
2000-01-03 | -0.603598 | -0.143643 | -1.143063 | -0.425266 |
2000-01-04 | -0.486200 | -0.136663 | -2.016020 | -0.815514 |
2000-01-05 | 0.835318 | 1.036607 | -0.502919 | 0.878680 |
2000-01-06 | -2.376205 | 0.362577 | -0.484754 | -0.478711 |
2000-01-07 | 0.193371 | 1.330468 | 0.544160 | 1.030900 |
2000-01-08 | 0.476533 | -0.476653 | -0.434356 | 0.744500 |
Out[8]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | |
---|---|---|---|---|
2000-01-01 | 0.350419 | 0.126827 | 1.251866 | -0.047518 |
2000-01-02 | 0.327611 | -0.915900 | 0.411770 | -1.473522 |
2000-01-03 | -0.389806 | -0.340913 | -0.747511 | -0.327524 |
2000-01-04 | -0.272408 | -0.333933 | -1.620467 | -0.717772 |
2000-01-05 | 1.049110 | 0.839337 | -0.107366 | 0.976422 |
2000-01-06 | -2.162413 | 0.165307 | -0.089201 | -0.380969 |
2000-01-07 | 0.407163 | 1.133198 | 0.939713 | 1.128641 |
2000-01-08 | 0.690325 | -0.673923 | -0.038803 | 0.842241 |
In [9]:
# Thus, as per above, we have the most basic indexing using []: # 最基本的索引方法,使用[] s = df[‘A‘] s dates[5] # 注意切片从0计数 s[dates[5]]
Out[9]:
2000-01-01 0.136628 2000-01-02 0.113819 2000-01-03 -0.603598 2000-01-04 -0.486200 2000-01-05 0.835318 2000-01-06 -2.376205 2000-01-07 0.193371 2000-01-08 0.476533 Freq: D, Name: A, dtype: float64
Out[9]:
Timestamp(‘2000-01-06 00:00:00‘, freq=‘D‘)
Out[9]:
-2.376204948581219
In [12]:
# 在[]中传入列名的列表,如[ ‘A‘, "B" ] columns_l = [‘A‘, ‘B‘] df[columns_l] df[[ ‘A‘, "B" ]] # 相当于上面,注意两重[] df
Out[12]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | |
---|---|---|
2000-01-01 | 0.324097 | 0.136628 |
2000-01-02 | -0.718630 | 0.113819 |
2000-01-03 | -0.143643 | -0.603598 |
2000-01-04 | -0.136663 | -0.486200 |
2000-01-05 | 1.036607 | 0.835318 |
2000-01-06 | 0.362577 | -2.376205 |
2000-01-07 | 1.330468 | 0.193371 |
2000-01-08 | -0.476653 | 0.476533 |
Out[12]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | |
---|---|---|
2000-01-01 | 0.324097 | 0.136628 |
2000-01-02 | -0.718630 | 0.113819 |
2000-01-03 | -0.143643 | -0.603598 |
2000-01-04 | -0.136663 | -0.486200 |
2000-01-05 | 1.036607 | 0.835318 |
2000-01-06 | 0.362577 | -2.376205 |
2000-01-07 | 1.330468 | 0.193371 |
2000-01-08 | -0.476653 | 0.476533 |
Out[12]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | |
---|---|---|---|---|
2000-01-01 | 0.324097 | 0.136628 | 0.856313 | -0.145259 |
2000-01-02 | -0.718630 | 0.113819 | 0.016217 | -1.571263 |
2000-01-03 | -0.143643 | -0.603598 | -1.143063 | -0.425266 |
2000-01-04 | -0.136663 | -0.486200 | -2.016020 | -0.815514 |
2000-01-05 | 1.036607 | 0.835318 | -0.502919 | 0.878680 |
2000-01-06 | 0.362577 | -2.376205 | -0.484754 | -0.478711 |
2000-01-07 | 1.330468 | 0.193371 | 0.544160 | 1.030900 |
2000-01-08 | -0.476653 | 0.476533 | -0.434356 | 0.744500 |
In [17]:
df[[‘A‘, ‘B‘]] = df[[‘B‘, ‘A‘]] # 交换两列的值 df df.loc[:,[‘B‘, ‘A‘]] # 下式不能交换两列的值 # This will not modify df because the column alignment is before value assignment. ? 不理解? # 列赋值在值赋值之前? df.loc[:,[‘B‘, ‘A‘]] = df[[‘A‘, ‘B‘]] df # df.loc[:,[‘B‘, ‘A‘]] = df[:, [‘A‘, ‘B‘]] # 错误? # df # 正确的方式: df.loc[:,[‘B‘, ‘A‘]] = df[[‘A‘, ‘B‘]].values # 取列的值 df
Out[17]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | |
---|---|---|---|---|
2000-01-01 | 0.136628 | 0.324097 | 0.856313 | -0.145259 |
2000-01-02 | 0.113819 | -0.718630 | 0.016217 | -1.571263 |
2000-01-03 | -0.603598 | -0.143643 | -1.143063 | -0.425266 |
2000-01-04 | -0.486200 | -0.136663 | -2.016020 | -0.815514 |
2000-01-05 | 0.835318 | 1.036607 | -0.502919 | 0.878680 |
2000-01-06 | -2.376205 | 0.362577 | -0.484754 | -0.478711 |
2000-01-07 | 0.193371 | 1.330468 | 0.544160 | 1.030900 |
2000-01-08 | 0.476533 | -0.476653 | -0.434356 | 0.744500 |
Out[17]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
B | A | |
---|---|---|
2000-01-01 | 0.324097 | 0.136628 |
2000-01-02 | -0.718630 | 0.113819 |
2000-01-03 | -0.143643 | -0.603598 |
2000-01-04 | -0.136663 | -0.486200 |
2000-01-05 | 1.036607 | 0.835318 |
2000-01-06 | 0.362577 | -2.376205 |
2000-01-07 | 1.330468 | 0.193371 |
2000-01-08 | -0.476653 | 0.476533 |
Out[17]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | |
---|---|---|---|---|
2000-01-01 | 0.136628 | 0.324097 | 0.856313 | -0.145259 |
2000-01-02 | 0.113819 | -0.718630 | 0.016217 | -1.571263 |
2000-01-03 | -0.603598 | -0.143643 | -1.143063 | -0.425266 |
2000-01-04 | -0.486200 | -0.136663 | -2.016020 | -0.815514 |
2000-01-05 | 0.835318 | 1.036607 | -0.502919 | 0.878680 |
2000-01-06 | -2.376205 | 0.362577 | -0.484754 | -0.478711 |
2000-01-07 | 0.193371 | 1.330468 | 0.544160 | 1.030900 |
2000-01-08 | 0.476533 | -0.476653 | -0.434356 | 0.744500 |
Out[17]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | |
---|---|---|---|---|
2000-01-01 | 0.324097 | 0.136628 | 0.856313 | -0.145259 |
2000-01-02 | -0.718630 | 0.113819 | 0.016217 | -1.571263 |
2000-01-03 | -0.143643 | -0.603598 | -1.143063 | -0.425266 |
2000-01-04 | -0.136663 | -0.486200 | -2.016020 | -0.815514 |
2000-01-05 | 1.036607 | 0.835318 | -0.502919 | 0.878680 |
2000-01-06 | 0.362577 | -2.376205 | -0.484754 | -0.478711 |
2000-01-07 | 1.330468 | 0.193371 | 0.544160 | 1.030900 |
2000-01-08 | -0.476653 | 0.476533 | -0.434356 | 0.744500 |
In [18]:
# Attribute Access? # 属性访问,属性存取 # You may access an index on a Series, column on a DataFrame, # and an item on a Panel directly as an attribute: sa = pd.Series([1,2,3],index=list(‘abc‘)) sa dfa = df.copy() dfa
Out[18]:
a 1 b 2 c 3 dtype: int64
Out[18]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | |
---|---|---|---|---|
2000-01-01 | 0.324097 | 0.136628 | 0.856313 | -0.145259 |
2000-01-02 | -0.718630 | 0.113819 | 0.016217 | -1.571263 |
2000-01-03 | -0.143643 | -0.603598 | -1.143063 | -0.425266 |
2000-01-04 | -0.136663 | -0.486200 | -2.016020 | -0.815514 |
2000-01-05 | 1.036607 | 0.835318 | -0.502919 | 0.878680 |
2000-01-06 | 0.362577 | -2.376205 | -0.484754 | -0.478711 |
2000-01-07 | 1.330468 | 0.193371 | 0.544160 | 1.030900 |
2000-01-08 | -0.476653 | 0.476533 | -0.434356 | 0.744500 |
In [20]:
# 对item column等赋值 # 就像属性一样的存取,但需要注意: # 1. 名称应符合python命名规则,由字母、数字和下划线组成 # 2. 不能和已有的方法名称重名,例如 min # 3. 不能与pandas内部“关键字”重名,例如 index axis items labels # 以上情况,可以使用 [ "" ] 引用 sa.a = 5 sa dfa.index dfa.A = list(range(len(dfa.index))) dfa
Out[20]:
a 5 b 2 c 3 dtype: int64
Out[20]:
DatetimeIndex([‘2000-01-01‘, ‘2000-01-02‘, ‘2000-01-03‘, ‘2000-01-04‘, ‘2000-01-05‘, ‘2000-01-06‘, ‘2000-01-07‘, ‘2000-01-08‘], dtype=‘datetime64[ns]‘, freq=‘D‘)
Out[20]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | |
---|---|---|---|---|
2000-01-01 | 0 | 0.136628 | 0.856313 | -0.145259 |
2000-01-02 | 1 | 0.113819 | 0.016217 | -1.571263 |
2000-01-03 | 2 | -0.603598 | -1.143063 | -0.425266 |
2000-01-04 | 3 | -0.486200 | -2.016020 | -0.815514 |
2000-01-05 | 4 | 0.835318 | -0.502919 | 0.878680 |
2000-01-06 | 5 | -2.376205 | -0.484754 | -0.478711 |
2000-01-07 | 6 | 0.193371 | 0.544160 | 1.030900 |
2000-01-08 | 7 | 0.476533 | -0.434356 | 0.744500 |
In [21]:
x = pd.DataFrame({‘x‘: [1, 2, 3], ‘y‘: [3, 4, 5]}) # 字典key值为列名 x
Out[21]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
x | y | |
---|---|---|
0 | 1 | 3 |
1 | 2 | 4 |
2 | 3 | 5 |
In [24]:
dict(x=9, y=99) x.iloc[1] x.iloc[1] = dict(x=9, y=99) x
Out[24]:
{‘x‘: 9, ‘y‘: 99}
Out[24]:
x 2 y 4 Name: 1, dtype: int64
Out[24]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
x | y | |
---|---|---|
0 | 1 | 3 |
1 | 9 | 99 |
2 | 3 | 5 |
In [29]:
df = pd.DataFrame({‘one‘: [1., 2., 3.]}) df df.two = [4, 5, 6] # 错误,不能增加一列,利用属性的方式不能对没有的列赋值 df.two # 但是增加了一项属性,而且可以取得这项属性 df df[‘two‘] = [4, 5, 6] # 可以增加一列 df
Out[29]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
one | |
---|---|
0 | 1.0 |
1 | 2.0 |
2 | 3.0 |
d:\python\36-64\lib\site-packages\ipykernel_launcher.py:3: UserWarning: Pandas doesn‘t allow columns to be created via a new attribute name - see https://pandas.pydata.org/pandas-docs/stable/indexing.html#attribute-access This is separate from the ipykernel package so we can avoid doing imports until
Out[29]:
[4, 5, 6]
Out[29]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
one | |
---|---|
0 | 1.0 |
1 | 2.0 |
2 | 3.0 |
Out[29]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
one | two | |
---|---|---|
0 | 1.0 | 4 |
1 | 2.0 | 5 |
2 | 3.0 | 6 |
In [31]:
# Slicing ranges # 切片范围 # iloc 方法是最稳健和兼容的 # 下面介绍 方括号 [] 操作符 作为切片 # 对series操作 # 取值 s s[:5] s[::2] s[::-1]
Out[31]:
2000-01-01 0.324097 2000-01-02 -0.718630 2000-01-03 -0.143643 2000-01-04 -0.136663 2000-01-05 1.036607 2000-01-06 0.362577 2000-01-07 1.330468 2000-01-08 -0.476653 Freq: D, Name: A, dtype: float64
Out[31]:
2000-01-01 0.324097 2000-01-02 -0.718630 2000-01-03 -0.143643 2000-01-04 -0.136663 2000-01-05 1.036607 Freq: D, Name: A, dtype: float64
Out[31]:
2000-01-01 0.324097 2000-01-03 -0.143643 2000-01-05 1.036607 2000-01-07 1.330468 Freq: 2D, Name: A, dtype: float64
Out[31]:
2000-01-08 -0.476653 2000-01-07 1.330468 2000-01-06 0.362577 2000-01-05 1.036607 2000-01-04 -0.136663 2000-01-03 -0.143643 2000-01-02 -0.718630 2000-01-01 0.324097 Freq: -1D, Name: A, dtype: float64
In [33]:
# 赋值 s2 = s.copy() s2 s2[:5] = 0 s2
Out[33]:
2000-01-01 0.324097 2000-01-02 -0.718630 2000-01-03 -0.143643 2000-01-04 -0.136663 2000-01-05 1.036607 2000-01-06 0.362577 2000-01-07 1.330468 2000-01-08 -0.476653 Freq: D, Name: A, dtype: float64
Out[33]:
2000-01-01 0.000000 2000-01-02 0.000000 2000-01-03 0.000000 2000-01-04 0.000000 2000-01-05 0.000000 2000-01-06 0.362577 2000-01-07 1.330468 2000-01-08 -0.476653 Freq: D, Name: A, dtype: float64
In [35]:
# 对DataFrame操作 # [] 操作 选择的是行 df df[:3] df[::-1]
Out[35]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
one | two | |
---|---|---|
0 | 1.0 | 4 |
1 | 2.0 | 5 |
2 | 3.0 | 6 |
Out[35]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
one | two | |
---|---|---|
0 | 1.0 | 4 |
1 | 2.0 | 5 |
2 | 3.0 | 6 |
Out[35]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
one | two | |
---|---|---|
2 | 3.0 | 6 |
1 | 2.0 | 5 |
0 | 1.0 | 4 |
In [49]:
# Selection By Label # 通过标签选择 # 这种方式可能依靠上下文关系,有时候会调用链式赋值,这应该避免。参考: # Returning a view versus a copy 返回视图 对比 拷贝 # When setting values in a pandas object, # care must be taken to avoid what is called chained indexing. # Here is an example. [list(‘abcd‘),list(‘efgh‘),list(‘ijkl‘),list(‘mnop‘)] [[‘one‘,‘two‘],[‘first‘,‘second‘]] dfmi = pd.DataFrame([list(‘abcd‘),list(‘efgh‘),list(‘ijkl‘),list(‘mnop‘)], # 定义四列数值 columns=pd.MultiIndex.from_product( [[‘one‘,‘two‘],[‘first‘,‘second‘]])) # 定义多重索引,第一个list是第一层,以下类推 dfmi
Out[49]:
[[‘a‘, ‘b‘, ‘c‘, ‘d‘], [‘e‘, ‘f‘, ‘g‘, ‘h‘], [‘i‘, ‘j‘, ‘k‘, ‘l‘], [‘m‘, ‘n‘, ‘o‘, ‘p‘]]
Out[49]:
[[‘one‘, ‘two‘], [‘first‘, ‘second‘]]
Out[49]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead tr th { text-align: left }
one | two | |||
---|---|---|---|---|
first | second | first | second | |
0 | a | b | c | d |
1 | e | f | g | h |
2 | i | j | k | l |
3 | m | n | o | p |
In [50]:
# Compare these two access methods: dfmi[‘one‘][‘second‘] # chained dfmi.loc[:,(‘one‘,‘second‘)]
Out[50]:
0 b 1 f 2 j 3 n Name: second, dtype: object
Out[50]:
0 b 1 f 2 j 3 n Name: (one, second), dtype: object
In [40]:
# 两种方式分析 # 第一种方式:链式 使用两个 [] dfmi[‘one‘] # 第一个[] 先生成了一个DataFrame dfmi[‘one‘][‘second‘] # pandas 把两个[] 作为分开的事件,他们执行分开的两步调用 __getitem__
Out[40]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
first | second | |
---|---|---|
0 | a | b |
1 | e | f |
2 | i | j |
3 | m | n |
In [53]:
# 第二种方式:loc # 通过嵌套的元组切片 df_s = (slice(None), (‘one‘, ‘second‘)) dfmi.loc[df_s] # 只调用了一次 __getitem__
Out[53]:
0 b 1 f 2 j 3 n Name: (one, second), dtype: object
In [62]:
# Selection By Label # 通过标签选择 # loc要注意索引的数据类型,必须与索引的数据类型一致才可以, # 例如 datetimeIndex 中,使用loc[2:3] ,即整数型的slice 将会出现TypeError dfl = pd.DataFrame(np.random.randn(5,4), columns=list(‘ABCD‘), index=pd.date_range(‘20130101‘,periods=5)) dfl # dfl.loc[2:3] # 错误的loc dfl.loc[‘20130102‘:‘20130104‘] # 使用可转换为datetime的字符串 dfl.loc[‘20130202‘:‘20130204‘] # 不报错,返回为空DataFrame # dfl.loc[‘20130202‘] # 报错,错误信息是index无此值 dfl.loc[‘20130104‘:‘20130114‘] # 只返回存在的数据
Out[62]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | |
---|---|---|---|---|
2013-01-01 | -0.887358 | 1.068362 | 0.551961 | -0.378400 |
2013-01-02 | 1.239840 | -0.986149 | -0.880655 | 2.112731 |
2013-01-03 | -0.785526 | 1.583703 | -0.871005 | -0.659880 |
2013-01-04 | -1.267462 | 2.500886 | -0.980569 | 1.308624 |
2013-01-05 | -0.842107 | -0.921086 | 1.020196 | -0.055930 |
Out[62]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | |
---|---|---|---|---|
2013-01-02 | 1.239840 | -0.986149 | -0.880655 | 2.112731 |
2013-01-03 | -0.785526 | 1.583703 | -0.871005 | -0.659880 |
2013-01-04 | -1.267462 | 2.500886 | -0.980569 | 1.308624 |
Out[62]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D |
---|
Out[62]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | |
---|---|---|---|---|
2013-01-04 | -1.267462 | 2.500886 | -0.980569 | 1.308624 |
2013-01-05 | -0.842107 | -0.921086 | 1.020196 | -0.055930 |
In [64]:
# loc可以使用整数,但此时的整数不代表位置,而是label # loc是基本的取值方法 # 给loc的输入,即在[]中的值,可以是: # 1. 单独的label e.g. 5 or ‘a # 2. labels的list [‘a‘, ‘b‘, ‘c‘] # 3. slice对象 ‘a‘:‘f‘ !! 注意:与python的切片不同,pandas的切片包括开始和结尾,而python不包括结尾 # 4. 布尔值 # 5. 调用函数 [lambda df: df.A > 0, :] # Series s1 = pd.Series(np.random.randn(6),index=list(‘abcdef‘)) s1 s1.loc[‘c‘:] s1.loc[‘b‘] s1.loc[‘c‘:] = 0 s1
Out[64]:
a 0.796911 b -1.341250 c 0.008152 d -0.745881 e 0.674385 f 1.108411 dtype: float64
Out[64]:
c 0.008152 d -0.745881 e 0.674385 f 1.108411 dtype: float64
Out[64]:
-1.3412499335785426
Out[64]:
a 0.796911 b -1.341250 c 0.000000 d 0.000000 e 0.000000 f 0.000000 dtype: float64
In [65]:
# DataFrame df1 = pd.DataFrame(np.random.randn(6,4), # 6X4 阵列 index=list(‘abcdef‘), # 索引 columns=list(‘ABCD‘)) # 行号 df1
Out[65]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | |
---|---|---|---|---|
a | -1.912141 | -0.835589 | -0.188341 | -1.024797 |
b | -0.977498 | -2.050214 | 0.355172 | -0.291794 |
c | -0.183401 | -0.376330 | -0.188848 | -2.116438 |
d | -1.008359 | 0.230593 | -0.099235 | -0.426229 |
e | -0.027338 | 2.125459 | 0.066200 | -0.247813 |
f | -1.132103 | 1.945235 | 1.891179 | 1.549750 |
In [72]:
df1.loc[[‘a‘, ‘b‘, ‘d‘], :] # 先是行label选择,再是列label选择 df1.loc[‘d‘:, ‘A‘:‘C‘] # 取得 a cross section 截面,用单个的label,返回Series # 以下三式等同 df1.loc[‘a‘] df1.loc[‘a‘,:] df1.xs(‘a‘) type(df1.loc[‘a‘])
Out[72]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | |
---|---|---|---|---|
a | -1.912141 | -0.835589 | -0.188341 | -1.024797 |
b | -0.977498 | -2.050214 | 0.355172 | -0.291794 |
d | -1.008359 | 0.230593 | -0.099235 | -0.426229 |
Out[72]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | |
---|---|---|---|
d | -1.008359 | 0.230593 | -0.099235 |
e | -0.027338 | 2.125459 | 0.066200 |
f | -1.132103 | 1.945235 | 1.891179 |
Out[72]:
A -1.912141 B -0.835589 C -0.188341 D -1.024797 Name: a, dtype: float64
Out[72]:
A -1.912141 B -0.835589 C -0.188341 D -1.024797 Name: a, dtype: float64
Out[72]:
A -1.912141 B -0.835589 C -0.188341 D -1.024797 Name: a, dtype: float64
Out[72]:
pandas.core.series.Series
In [73]:
# 通过布尔值数组取值 df1.loc[‘a‘] > 0 df1.loc[:, df1.loc[‘a‘] > 0]
Out[73]:
A False B False C False D False Name: a, dtype: bool
Out[73]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a |
---|
b |
c |
d |
e |
f |
In [74]:
# 获取一个值 # this is also equivalent to ``df1.at[‘a‘,‘A‘]`` df1.loc[‘a‘, ‘A‘] df1.at[‘a‘,‘A‘]
Out[74]:
-1.9121410098540752
Out[74]:
-1.9121410098540752
In [75]:
# Slicing with labels? # 用labels切片 s = pd.Series(list(‘abcde‘), index=[0,3,2,5,4]) s s.loc[3:5] # 包含 5, 注意不是 3 4 5 ,而是从 标签3 到 标签5
Out[75]:
0 a 3 b 2 c 5 d 4 e dtype: object
Out[75]:
3 b 2 c 5 d dtype: object
In [80]:
# s.loc[3:6] # 2个错误,ValueError: index must be monotonic increasing or decreasing KeyError: 6 # 如果排序的话,可以超出范围 s.sort_index() # 不改变原值 s s.sort_index().loc[1:6] # 可以超出范围 s.sort_index().loc[6:8] # 即使一个都没有 # s.sort_index().loc[8] # 但不能是单值,必须是切片
Out[80]:
0 a 2 c 3 b 4 e 5 d dtype: object
Out[80]:
0 a 3 b 2 c 5 d 4 e dtype: object
Out[80]:
2 c 3 b 4 e 5 d dtype: object
Out[80]:
Series([], dtype: object)
In [82]:
# Selection By Position # 通过位置选择,仅通过基于索引的整数,与python和numpy类似,从0开始,且不包括最后一个 # iloc的输入: # 1. 整数 # 2. 整数的list # 3. 整数的切片 # 4. 布尔值数组 # 5. 调用函数 # Series s1 = pd.Series(np.random.randn(5), index=list(range(0,10,2))) s1 s1.iloc[:3] s1.iloc[3] s1.iloc[:3] = 0 s1
Out[82]:
0 -0.312716 2 1.425936 4 1.716575 6 2.099666 8 0.262365 dtype: float64
Out[82]:
0 -0.312716 2 1.425936 4 1.716575 dtype: float64
Out[82]:
2.099665679869975
Out[82]:
0 0.000000 2 0.000000 4 0.000000 6 2.099666 8 0.262365 dtype: float64
In [83]:
# DataFrame df1 = pd.DataFrame(np.random.randn(6,4), index=list(range(0,12,2)), columns=list(range(0,8,2))) df1
Out[83]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
0 | 2 | 4 | 6 | |
---|---|---|---|---|
0 | 1.635993 | -0.512450 | 1.786760 | -0.002533 |
2 | 0.173188 | 0.275977 | -0.044987 | -1.077772 |
4 | 1.985020 | 1.604020 | 0.127853 | -1.003384 |
6 | 0.250428 | -0.102090 | 1.566787 | -1.708521 |
8 | -2.111103 | -1.232141 | 0.863753 | -0.545229 |
10 | -1.762999 | 1.009840 | 0.274013 | 0.786940 |
In [87]:
df1.iloc[:3] df1.iloc[1:5, 2:4] df1.iloc[[1, 3, 5], [1, 3]] df1.iloc[1:3, :] df1.iloc[:, 1:3]
Out[87]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
0 | 2 | 4 | 6 | |
---|---|---|---|---|
0 | 1.635993 | -0.512450 | 1.786760 | -0.002533 |
2 | 0.173188 | 0.275977 | -0.044987 | -1.077772 |
4 | 1.985020 | 1.604020 | 0.127853 | -1.003384 |
Out[87]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
4 | 6 | |
---|---|---|
2 | -0.044987 | -1.077772 |
4 | 0.127853 | -1.003384 |
6 | 1.566787 | -1.708521 |
8 | 0.863753 | -0.545229 |
Out[87]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
2 | 6 | |
---|---|---|
2 | 0.275977 | -1.077772 |
6 | -0.102090 | -1.708521 |
10 | 1.009840 | 0.786940 |
Out[87]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
0 | 2 | 4 | 6 | |
---|---|---|---|---|
2 | 0.173188 | 0.275977 | -0.044987 | -1.077772 |
4 | 1.985020 | 1.604020 | 0.127853 | -1.003384 |
Out[87]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
2 | 4 | |
---|---|---|
0 | -0.512450 | 1.786760 |
2 | 0.275977 | -0.044987 |
4 | 1.604020 | 0.127853 |
6 | -0.102090 | 1.566787 |
8 | -1.232141 | 0.863753 |
10 | 1.009840 | 0.274013 |
In [89]:
# this is also equivalent to ``df1.iat[1,1]`` # 取单个的值 df1.iloc[1, 1] df1.iat[1, 1]
Out[89]:
0.2759774784621013
Out[89]:
0.2759774784621013
In [92]:
# For getting a cross section using an integer position (equiv to df.xs(1)) # 取截面,得到Series df1.iloc[1] df1.iloc[:,1]
Out[92]:
0 0.173188 2 0.275977 4 -0.044987 6 -1.077772 Name: 2, dtype: float64
Out[92]:
0 -0.512450 2 0.275977 4 1.604020 6 -0.102090 8 -1.232141 10 1.009840 Name: 2, dtype: float64
In [93]:
# Out of range slice indexes are handled gracefully just as in Python/Numpy. # 超过索引的切片处理,与python和numpy一样 # 注意:不能是单独索引,或列表中,有超过界限的值,只可以是slice,即带冒号的切片才不会提示错误 x = list(‘abcdef‘) x[4:10] x[8:10] s = pd.Series(x) s.iloc[4:10] s.iloc[8:10] # 超过界限bound返回空
Out[93]:
[‘e‘, ‘f‘]
Out[93]:
[]
Out[93]:
4 e 5 f dtype: object
Out[93]:
Series([], dtype: object)
In [94]:
dfl = pd.DataFrame(np.random.randn(5,2), columns=list(‘AB‘)) dfl dfl.iloc[:, 2:3] dfl.iloc[:, 1:3] dfl.iloc[4:6]
Out[94]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | |
---|---|---|
0 | -0.069941 | 1.124145 |
1 | -0.025781 | 0.940736 |
2 | -0.117417 | 0.503736 |
3 | 0.882286 | 0.302845 |
4 | -0.136374 | 0.276822 |
Out[94]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
0 |
---|
1 |
2 |
3 |
4 |
Out[94]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
B | |
---|---|
0 | 1.124145 |
1 | 0.940736 |
2 | 0.503736 |
3 | 0.302845 |
4 | 0.276822 |
Out[94]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | |
---|---|---|
4 | -0.136374 | 0.276822 |
In [99]:
# Selection By Callable # 通过调用函数进行选择 df1 = pd.DataFrame(np.random.randn(6,4), index=list("abcdef"), columns=list("ABCD")) df1 df1.A
Out[99]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | |
---|---|---|---|---|
a | -1.947578 | 0.874286 | 1.139484 | -3.004564 |
b | 0.565255 | 0.028440 | 0.685688 | 0.973264 |
c | -1.275992 | 0.732339 | -0.324490 | 1.116887 |
d | 0.433325 | 0.002567 | -1.310127 | 0.844756 |
e | 0.341412 | -0.606646 | 0.034623 | 0.772968 |
f | 1.518936 | -0.590351 | 0.604839 | -1.461750 |
Out[99]:
a -1.947578 b 0.565255 c -1.275992 d 0.433325 e 0.341412 f 1.518936 Name: A, dtype: float64
In [100]:
df1.loc[lambda df: df.A > 0, :] df1.loc[:, lambda df: [‘A‘, ‘B‘]] df1.iloc[:, lambda df: [0, 1]] df1[lambda df: df.columns[0]]
Out[100]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | |
---|---|---|---|---|
b | 0.565255 | 0.028440 | 0.685688 | 0.973264 |
d | 0.433325 | 0.002567 | -1.310127 | 0.844756 |
e | 0.341412 | -0.606646 | 0.034623 | 0.772968 |
f | 1.518936 | -0.590351 | 0.604839 | -1.461750 |
Out[100]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | |
---|---|---|
a | -1.947578 | 0.874286 |
b | 0.565255 | 0.028440 |
c | -1.275992 | 0.732339 |
d | 0.433325 | 0.002567 |
e | 0.341412 | -0.606646 |
f | 1.518936 | -0.590351 |
Out[100]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | |
---|---|---|
a | -1.947578 | 0.874286 |
b | 0.565255 | 0.028440 |
c | -1.275992 | 0.732339 |
d | 0.433325 | 0.002567 |
e | 0.341412 | -0.606646 |
f | 1.518936 | -0.590351 |
Out[100]:
a -1.947578 b 0.565255 c -1.275992 d 0.433325 e 0.341412 f 1.518936 Name: A, dtype: float64
In [101]:
df1.A df1.A.loc[lambda s: s > 0] df1.A.loc[df1.A > 0]
Out[101]:
a -1.947578 b 0.565255 c -1.275992 d 0.433325 e 0.341412 f 1.518936 Name: A, dtype: float64
Out[101]:
b 0.565255 d 0.433325 e 0.341412 f 1.518936 Name: A, dtype: float64
Out[101]:
b 0.565255 d 0.433325 e 0.341412 f 1.518936 Name: A, dtype: float64
In [ ]:
# 使用这些方法或索引,可以使用链式的选择方法,而不用中间的临时变量。链式方法,不是链式[] bb = pd.read_csv(‘data/baseball.csv‘, index_col=‘id‘) bb.groupby([‘year‘, ‘team‘]).sum().loc[lambda df: df.r > 100]
In [102]:
# IX Indexer is Deprecated # 不推荐使用ix # in favor of the more strict .iloc and .loc indexers. # 使用.iloc和.loc代替.ix dfd = pd.DataFrame({‘A‘: [1, 2, 3],‘B‘: [4, 5, 6]},index=list(‘abc‘)) dfd
Out[102]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | |
---|---|---|
a | 1 | 4 |
b | 2 | 5 |
c | 3 | 6 |
In [103]:
dfd.ix[[0, 2], ‘A‘]
d:\python\36-64\lib\site-packages\ipykernel_launcher.py:1: DeprecationWarning: .ix is deprecated. Please use .loc for label based indexing or .iloc for positional indexing See the documentation here: http://pandas.pydata.org/pandas-docs/stable/indexing.html#ix-indexer-is-deprecated """Entry point for launching an IPython kernel.
Out[103]:
a 1 c 3 Name: A, dtype: int64
In [105]:
dfd.index[[0, 2]] # 取得索引的名称 dfd.loc[dfd.index[[0, 2]], ‘A‘] dfd.columns.get_loc(‘A‘) # 取得列的索引值 dfd.iloc[[0, 2], dfd.columns.get_loc(‘A‘)]
Out[105]:
Index([‘a‘, ‘c‘], dtype=‘object‘)
Out[105]:
a 1 c 3 Name: A, dtype: int64
Out[105]:
0
Out[105]:
a 1 c 3 Name: A, dtype: int64
In [106]:
# Indexing with list with missing labels is Deprecated # 不推荐用有缺失标签的list进行索引 # using .loc or [] with a list with one or more missing labels, is deprecated, in favor of .reindex. # 推荐使用.reindex s = pd.Series([1, 2, 3]) s
Out[106]:
0 1 1 2 2 3 dtype: int64
In [107]:
s.loc[[1, 2]] # list中的keys都存在,则没有变化
Out[107]:
1 2 2 3 dtype: int64
In [108]:
s.loc[[1, 2, 3]] # 当有缺失时,赋值为NaN
d:\python\36-64\lib\site-packages\ipykernel_launcher.py:1: FutureWarning: Passing list-likes to .loc or [] with any missing label will raise KeyError in the future, you can use .reindex() as an alternative. See the documentation here: http://pandas.pydata.org/pandas-docs/stable/indexing.html#deprecate-loc-reindex-listlike """Entry point for launching an IPython kernel.
Out[108]:
1 2.0 2 3.0 3 NaN dtype: float64
In [109]:
# Reindexing s.reindex([1, 2, 3])
Out[109]:
1 2.0 2 3.0 3 NaN dtype: float64
In [110]:
# 如果仅选择有效的keys labels = [1, 2, 3] s.index.intersection(labels) # index和labes的交集 s.loc[s.index.intersection(labels)]
Out[110]:
Int64Index([1, 2], dtype=‘int64‘)
Out[110]:
1 2 2 3 dtype: int64
In [112]:
# reindex 索引中不能有重复的项 s = pd.Series(np.arange(4), index=[‘a‘, ‘a‘, ‘b‘, ‘c‘]) s labels = [‘c‘, ‘d‘] # s.reindex(labels) # 不能reindex
Out[112]:
a 0 a 1 b 2 c 3 dtype: int32
In [113]:
# 可以先把交集切出来,再进行reindex # 但是交集不能有重复的index s.index.intersection(labels) s.loc[s.index.intersection(labels)] s.loc[s.index.intersection(labels)].reindex(labels)
Out[113]:
Index([‘c‘], dtype=‘object‘)
Out[113]:
c 3 dtype: int32
Out[113]:
c 3.0 d NaN dtype: float64
In [114]:
# Selecting Random Samples # 随机取样选择 # 默认行取样 s = pd.Series([0,1,2,3,4,5]) s
Out[114]:
0 0 1 1 2 2 3 3 4 4 5 5 dtype: int64
In [129]:
s.sample() # 默认取1行 s.sample(n=3) # 取3行 s.sample(frac=0.5) # 小数,行数百分数 s.sample(frac=0.8) # 小数 s
Out[129]:
1 1 dtype: int64
Out[129]:
3 3 4 4 5 5 dtype: int64
Out[129]:
2 2 3 3 4 4 dtype: int64
Out[129]:
2 2 1 1 3 3 0 0 5 5 dtype: int64
Out[129]:
0 0 1 1 2 2 3 3 4 4 5 5 dtype: int64
In [132]:
s.sample(n=6, replace=False) # 默认 s.sample(n=6, replace=True) # replace,不改变本身 s
Out[132]:
5 5 4 4 1 1 0 0 2 2 3 3 dtype: int64
Out[132]:
0 0 4 4 0 0 2 2 0 0 0 0 dtype: int64
Out[132]:
0 0 1 1 2 2 3 3 4 4 5 5 dtype: int64
In [166]:
# 默认每行都有同样的概率被抽样到,也可以指定每行的概率比重 example_weights = [0, 0, 0.2, 0.2, 0.2, 0.4] s.sample(n=3, weights=example_weights) example_weights2 = [0.5, 0, 0, 0, 0, 0] # 权重将会自动的归一化 s.sample(n=1, weights=example_weights2)
Out[166]:
2 2 3 3 5 5 dtype: int64
Out[166]:
0 0 dtype: int64
In [175]:
# 可以指定DataFrame的某列作为权重 df2 = pd.DataFrame({‘col1‘:[9,8,7,6], ‘weight_column‘:[0.5, 0.4, 0.1, 0]}) df2.sample(n = 3, weights = ‘weight_column‘)
Out[175]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
col1 | weight_column | |
---|---|---|
1 | 8 | 0.4 |
2 | 7 | 0.1 |
0 | 9 | 0.5 |
In [196]:
# 对列进行抽样 df3 = pd.DataFrame({‘col1‘:[1,2,3], ‘col2‘:[2,3,4], ‘col3‘:[3,4,5]}) df3 df3.sample(n=2, axis=1) # 指定axis=1,对列抽样,抽取的是列的组合 df3.sample(n=2, axis=0)
Out[196]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
col1 | col2 | col3 | |
---|---|---|---|
0 | 1 | 2 | 3 |
1 | 2 | 3 | 4 |
2 | 3 | 4 | 5 |
Out[196]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
col3 | col2 | |
---|---|---|
0 | 3 | 2 |
1 | 4 | 3 |
2 | 5 | 4 |
Out[196]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
col1 | col2 | col3 | |
---|---|---|---|
2 | 3 | 4 | 5 |
0 | 1 | 2 | 3 |
In [220]:
# 可以指定random seed 或者 numpy 的 randomState 对象,作为sample 随机数生成器的种子 # 一旦seed确定,随机数不变 df3.sample(n=2, random_state=2) df3.sample(n=2, random_state=2) df3.sample(n=2, random_state=200) df3.sample(n=2, random_state=200)
Out[220]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
col1 | col2 | col3 | |
---|---|---|---|
2 | 3 | 4 | 5 |
1 | 2 | 3 | 4 |
Out[220]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
col1 | col2 | col3 | |
---|---|---|---|
2 | 3 | 4 | 5 |
1 | 2 | 3 | 4 |
Out[220]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
col1 | col2 | col3 | |
---|---|---|---|
0 | 1 | 2 | 3 |
1 | 2 | 3 | 4 |
Out[220]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
col1 | col2 | col3 | |
---|---|---|---|
0 | 1 | 2 | 3 |
1 | 2 | 3 | 4 |
In [222]:
# Setting With Enlargement # loc或[] 操作 可以通过赋值不存在的键扩大Series或Dataframe # Series se = pd.Series([1,2,3]) se se[5] = 5 # append se
Out[222]:
0 1 1 2 2 3 dtype: int64
Out[222]:
0 1 1 2 2 3 5 5 dtype: int64
In [223]:
# DataFrame dfi = pd.DataFrame(np.arange(6).reshape(3,2),columns=[‘A‘,‘B‘]) dfi
Out[223]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | |
---|---|---|
0 | 0 | 1 |
1 | 2 | 3 |
2 | 4 | 5 |
In [224]:
dfi.loc[:,‘C‘] = dfi.loc[:,‘A‘] # enlarge 增加列 dfi
Out[224]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | |
---|---|---|---|
0 | 0 | 1 | 0 |
1 | 2 | 3 | 2 |
2 | 4 | 5 | 4 |
In [225]:
dfi.loc[3] = 5 # append 增加行 dfi
Out[225]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | |
---|---|---|---|
0 | 0 | 1 | 0 |
1 | 2 | 3 | 2 |
2 | 4 | 5 | 4 |
3 | 5 | 5 | 5 |
In [231]:
# Fast scalar value getting and setting # 快速取得或设置标量的值 # [] 可以进行很多操作,所以它为了知道你要进行那种操作,会有一点计算开销 # 最快的标量访问方式是使用 at 和 iat 方法,他们可以在所有的数据结构上使用 # at 类似于 loc 基于 label # iat 类似于 iloc 基于 整数index s = pd.Series([0,1,2,3,4,5]) s df = pd.DataFrame(np.random.randn(8, 4), index=dates, columns=[‘A‘, ‘B‘, ‘C‘, ‘D‘]) df
Out[231]:
0 0 1 1 2 2 3 3 4 4 5 5 dtype: int64
Out[231]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | |
---|---|---|---|---|
2000-01-01 | 0.845046 | -0.119758 | 1.354224 | -0.134199 |
2000-01-02 | -1.935579 | -1.469185 | -2.581439 | 0.355347 |
2000-01-03 | -0.038740 | -1.524056 | 1.376257 | 1.572331 |
2000-01-04 | -0.846971 | 0.189231 | -0.287885 | -0.561706 |
2000-01-05 | -0.127290 | -0.043918 | 0.103347 | -1.055387 |
2000-01-06 | 0.406437 | 1.917624 | 0.810463 | 0.367583 |
2000-01-07 | 0.438904 | -0.230190 | 0.593607 | -0.438856 |
2000-01-08 | -1.955122 | 1.531260 | 0.889124 | -0.014259 |
In [233]:
# get value s.iat[5] df.at[dates[5], ‘A‘] df.iat[3, 0]
Out[233]:
5
Out[233]:
0.40643702489386246
Out[233]:
-0.8469710793801154
In [234]:
# set value df.at[dates[5], ‘E‘] = 7 # 没有列就增加一列,没有值的默认赋值为nan df
Out[234]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | E | |
---|---|---|---|---|---|
2000-01-01 | 0.845046 | -0.119758 | 1.354224 | -0.134199 | NaN |
2000-01-02 | -1.935579 | -1.469185 | -2.581439 | 0.355347 | NaN |
2000-01-03 | -0.038740 | -1.524056 | 1.376257 | 1.572331 | NaN |
2000-01-04 | -0.846971 | 0.189231 | -0.287885 | -0.561706 | NaN |
2000-01-05 | -0.127290 | -0.043918 | 0.103347 | -1.055387 | NaN |
2000-01-06 | 0.406437 | 1.917624 | 0.810463 | 0.367583 | 7.0 |
2000-01-07 | 0.438904 | -0.230190 | 0.593607 | -0.438856 | NaN |
2000-01-08 | -1.955122 | 1.531260 | 0.889124 | -0.014259 | NaN |
In [235]:
df.iat[3, 0] = 7 df
Out[235]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | E | |
---|---|---|---|---|---|
2000-01-01 | 0.845046 | -0.119758 | 1.354224 | -0.134199 | NaN |
2000-01-02 | -1.935579 | -1.469185 | -2.581439 | 0.355347 | NaN |
2000-01-03 | -0.038740 | -1.524056 | 1.376257 | 1.572331 | NaN |
2000-01-04 | 7.000000 | 0.189231 | -0.287885 | -0.561706 | NaN |
2000-01-05 | -0.127290 | -0.043918 | 0.103347 | -1.055387 | NaN |
2000-01-06 | 0.406437 | 1.917624 | 0.810463 | 0.367583 | 7.0 |
2000-01-07 | 0.438904 | -0.230190 | 0.593607 | -0.438856 | NaN |
2000-01-08 | -1.955122 | 1.531260 | 0.889124 | -0.014259 | NaN |
In [236]:
df.at[dates[-1]+1, 0] = 7 # 行和列都扩展了 df
Out[236]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | E | 0 | |
---|---|---|---|---|---|---|
2000-01-01 | 0.845046 | -0.119758 | 1.354224 | -0.134199 | NaN | NaN |
2000-01-02 | -1.935579 | -1.469185 | -2.581439 | 0.355347 | NaN | NaN |
2000-01-03 | -0.038740 | -1.524056 | 1.376257 | 1.572331 | NaN | NaN |
2000-01-04 | 7.000000 | 0.189231 | -0.287885 | -0.561706 | NaN | NaN |
2000-01-05 | -0.127290 | -0.043918 | 0.103347 | -1.055387 | NaN | NaN |
2000-01-06 | 0.406437 | 1.917624 | 0.810463 | 0.367583 | 7.0 | NaN |
2000-01-07 | 0.438904 | -0.230190 | 0.593607 | -0.438856 | NaN | NaN |
2000-01-08 | -1.955122 | 1.531260 | 0.889124 | -0.014259 | NaN | NaN |
2000-01-09 | NaN | NaN | NaN | NaN | NaN | 7.0 |
In [ ]:
# Boolean indexing # 使用布尔向量过滤数据 # 操作符包括:| for or, & for and, and ~ for not ,必须用括号进行分组
In [237]:
s = pd.Series(range(-3, 4)) # 不用把range先list,直接可以series s
Out[237]:
0 -3 1 -2 2 -1 3 0 4 1 5 2 6 3 dtype: int64
In [238]:
s[s >= 0] # 直接用series,不用取其值 s[~(s < 0)] s[(s < -1) | (s > 0.5)]
Out[238]:
3 0 4 1 5 2 6 3 dtype: int64
Out[238]:
3 0 4 1 5 2 6 3 dtype: int64
Out[238]:
0 -3 1 -2 4 1 5 2 6 3 dtype: int64
In [239]:
df[df[‘A‘] > 0]
Out[239]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | E | 0 | |
---|---|---|---|---|---|---|
2000-01-01 | 0.845046 | -0.119758 | 1.354224 | -0.134199 | NaN | NaN |
2000-01-04 | 7.000000 | 0.189231 | -0.287885 | -0.561706 | NaN | NaN |
2000-01-06 | 0.406437 | 1.917624 | 0.810463 | 0.367583 | 7.0 | NaN |
2000-01-07 | 0.438904 | -0.230190 | 0.593607 | -0.438856 | NaN | NaN |
In [240]:
# List comprehensions and map method of Series can also be used to produce more complex criteria: # 列表生成式和map方法 也可以用来生成 更复杂的条件判断 df2 = pd.DataFrame({‘a‘ : [‘one‘, ‘one‘, ‘two‘, ‘three‘, ‘two‘, ‘one‘, ‘six‘], ‘b‘ : [‘x‘, ‘y‘, ‘y‘, ‘x‘, ‘y‘, ‘x‘, ‘x‘], ‘c‘ : np.random.randn(7)}) df2
Out[240]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | |
---|---|---|---|
0 | one | x | 1.706402 |
1 | one | y | 0.491977 |
2 | two | y | 1.357986 |
3 | three | x | -1.023513 |
4 | two | y | -0.653028 |
5 | one | x | 0.041052 |
6 | six | x | 1.021882 |
In [241]:
# 判别式 criterion = df2[‘a‘].map(lambda x: x.startswith(‘t‘)) # 选择 two 和 three criterion
Out[241]:
0 False 1 False 2 True 3 True 4 True 5 False 6 False Name: a, dtype: bool
In [242]:
df2[criterion] # 根据 a 列的判别式 选择数据表的一部分,包含其他列
Out[242]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | |
---|---|---|---|
2 | two | y | 1.357986 |
3 | three | x | -1.023513 |
4 | two | y | -0.653028 |
In [243]:
# 等价的方式,但是速度慢一些 df2[[x.startswith(‘t‘) for x in df2[‘a‘]]] # 不适用map,而是用列表生成式
Out[243]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | |
---|---|---|---|
2 | two | y | 1.357986 |
3 | three | x | -1.023513 |
4 | two | y | -0.653028 |
In [244]:
# 复合判断 df2[criterion & (df2[‘b‘] == ‘x‘)] # a 列 和 b 列 均符合某类要求
Out[244]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | |
---|---|---|---|
3 | three | x | -1.023513 |
In [245]:
# 布尔向量选择 可以与索引选择一并使用 df2.loc[criterion & (df2[‘b‘] == ‘x‘),‘b‘:‘c‘] # 只选择 b 和 c 两列,不选择c列
Out[245]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
b | c | |
---|---|---|
3 | x | -1.023513 |
In [ ]:
# Indexing with isin # 用isin索引
In [246]:
# series # 对列数据进行判断 s = pd.Series(np.arange(5), index=np.arange(5)[::-1], dtype=‘int64‘) s
Out[246]:
4 0 3 1 2 2 1 3 0 4 dtype: int64
In [248]:
s.isin([2, 4, 6]) # 列数据中是否存在列表中的值,返回布尔值 s[s.isin([2, 4, 6])] # 可以利用返回的布尔值进行选择
Out[248]:
4 False 3 False 2 True 1 False 0 True dtype: bool
Out[248]:
2 2 0 4 dtype: int64
In [249]:
# 也可以对index obj 进行筛选 s[s.index.isin([2, 4, 6])] s.reindex([2, 4, 6]) # reindex不同,列表中没有的值返回了nan,且原来的int64返回了float64数据类型
Out[249]:
4 0 2 2 dtype: int64
Out[249]:
2 2.0 4 0.0 6 NaN dtype: float64
In [250]:
# 对应多重索引,可以单独选择索引级别 s_mi = pd.Series(np.arange(6),index=pd.MultiIndex.from_product([[0, 1], [‘a‘, ‘b‘, ‘c‘]])) s_mi
Out[250]:
0 a 0 b 1 c 2 1 a 3 b 4 c 5 dtype: int32
In [252]:
s_mi.iloc[s_mi.index.isin([(1, ‘a‘), (2, ‘b‘), (0, ‘c‘)])] s_mi.iloc[s_mi.index.isin([‘a‘, ‘c‘, ‘e‘], level=1)] # 指定索引级别,在第二级索引中选择
Out[252]:
0 c 2 1 a 3 dtype: int32
Out[252]:
0 a 0 c 2 1 a 3 c 5 dtype: int32
In [253]:
# DataFrame df = pd.DataFrame({‘vals‘: [1, 2, 3, 4], ‘ids‘: [‘a‘, ‘b‘, ‘f‘, ‘n‘],‘ids2‘: [‘a‘, ‘n‘, ‘c‘, ‘n‘]}) df
Out[253]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
ids | ids2 | vals | |
---|---|---|---|
0 | a | a | 1 |
1 | b | n | 2 |
2 | f | c | 3 |
3 | n | n | 4 |
In [254]:
values = [‘a‘, ‘b‘, 1, 3] df.isin(values) # 匹配所有的值
Out[254]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
ids | ids2 | vals | |
---|---|---|---|
0 | True | True | True |
1 | True | False | False |
2 | False | False | True |
3 | False | False | False |
In [262]:
values = {‘ids‘: [‘a‘, ‘b‘], ‘ids2‘: [‘a‘, ‘c‘], ‘vals‘: [1, 3]} row_mask = df.isin(values) # 对不用的列,分别匹配某些值 row_mask # ?row_mask.all # Return whether all elements are True over requested axis row_mask = row_mask.all(1) row_mask df[row_mask] # 选择全是True的行
Out[262]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
ids | ids2 | vals | |
---|---|---|---|
0 | True | True | True |
1 | True | False | False |
2 | False | True | True |
3 | False | False | False |
Out[262]:
0 True 1 False 2 False 3 False dtype: bool
Out[262]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
ids | ids2 | vals | |
---|---|---|---|
0 | a | a | 1 |
In [264]:
# The where() Method and Masking # To guarantee that selection output has the same shape as the original data # 保证选集输出与原数据有同样的shape形态 # series s s[s > 0] # 只返回满足的项 s.where(s > 0) # 全部返回,不满足的项,赋值nan
Out[264]:
4 0 3 1 2 2 1 3 0 4 dtype: int64
Out[264]:
3 1 2 2 1 3 0 4 dtype: int64
Out[264]:
4 NaN 3 1.0 2 2.0 1 3.0 0 4.0 dtype: float64
In [267]:
# DataFrame 使用布尔值选择时,返回值保留原数据结构 df = pd.DataFrame(np.random.randn(8, 4), index=dates, columns=[‘A‘, ‘B‘, ‘C‘, ‘D‘]) df
Out[267]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | |
---|---|---|---|---|
2000-01-01 | 0.383691 | -0.500453 | 0.101632 | 0.848213 |
2000-01-02 | -1.048619 | 0.856605 | -0.295425 | 1.060710 |
2000-01-03 | -0.214918 | -1.989228 | 0.278514 | 1.088771 |
2000-01-04 | -2.326385 | -0.225754 | -1.331598 | 1.457230 |
2000-01-05 | 0.656919 | 1.081810 | 1.148303 | -0.089382 |
2000-01-06 | -1.041194 | 0.533706 | -1.084442 | 1.824709 |
2000-01-07 | -1.040706 | -2.336161 | 0.565496 | 0.269414 |
2000-01-08 | 0.166739 | -0.075381 | -0.951126 | -0.347865 |
In [268]:
df[df < 0] df.where(df < 0) # 等价于上式 df.where(df < 0, -df) # where 可以传入另一个参数,用于替换条件为 False 的项,返回copy数据拷贝,不修改原值 df
Out[268]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | |
---|---|---|---|---|
2000-01-01 | NaN | -0.500453 | NaN | NaN |
2000-01-02 | -1.048619 | NaN | -0.295425 | NaN |
2000-01-03 | -0.214918 | -1.989228 | NaN | NaN |
2000-01-04 | -2.326385 | -0.225754 | -1.331598 | NaN |
2000-01-05 | NaN | NaN | NaN | -0.089382 |
2000-01-06 | -1.041194 | NaN | -1.084442 | NaN |
2000-01-07 | -1.040706 | -2.336161 | NaN | NaN |
2000-01-08 | NaN | -0.075381 | -0.951126 | -0.347865 |
Out[268]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | |
---|---|---|---|---|
2000-01-01 | NaN | -0.500453 | NaN | NaN |
2000-01-02 | -1.048619 | NaN | -0.295425 | NaN |
2000-01-03 | -0.214918 | -1.989228 | NaN | NaN |
2000-01-04 | -2.326385 | -0.225754 | -1.331598 | NaN |
2000-01-05 | NaN | NaN | NaN | -0.089382 |
2000-01-06 | -1.041194 | NaN | -1.084442 | NaN |
2000-01-07 | -1.040706 | -2.336161 | NaN | NaN |
2000-01-08 | NaN | -0.075381 | -0.951126 | -0.347865 |
Out[268]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | |
---|---|---|---|---|
2000-01-01 | -0.383691 | -0.500453 | -0.101632 | -0.848213 |
2000-01-02 | -1.048619 | -0.856605 | -0.295425 | -1.060710 |
2000-01-03 | -0.214918 | -1.989228 | -0.278514 | -1.088771 |
2000-01-04 | -2.326385 | -0.225754 | -1.331598 | -1.457230 |
2000-01-05 | -0.656919 | -1.081810 | -1.148303 | -0.089382 |
2000-01-06 | -1.041194 | -0.533706 | -1.084442 | -1.824709 |
2000-01-07 | -1.040706 | -2.336161 | -0.565496 | -0.269414 |
2000-01-08 | -0.166739 | -0.075381 | -0.951126 | -0.347865 |
Out[268]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | |
---|---|---|---|---|
2000-01-01 | 0.383691 | -0.500453 | 0.101632 | 0.848213 |
2000-01-02 | -1.048619 | 0.856605 | -0.295425 | 1.060710 |
2000-01-03 | -0.214918 | -1.989228 | 0.278514 | 1.088771 |
2000-01-04 | -2.326385 | -0.225754 | -1.331598 | 1.457230 |
2000-01-05 | 0.656919 | 1.081810 | 1.148303 | -0.089382 |
2000-01-06 | -1.041194 | 0.533706 | -1.084442 | 1.824709 |
2000-01-07 | -1.040706 | -2.336161 | 0.565496 | 0.269414 |
2000-01-08 | 0.166739 | -0.075381 | -0.951126 | -0.347865 |
In [270]:
# You may wish to set values based on some boolean criteria. This can be done intuitively like so: # 设置基于布尔值的项值 s2 = s.copy() s2 s2[s2 < 3] = 0 s2 df2 = df.copy() df2 df2[df2 < 0] = 0 df2
Out[270]:
4 0 3 1 2 2 1 3 0 4 dtype: int64
Out[270]:
4 0 3 0 2 0 1 3 0 4 dtype: int64
Out[270]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | |
---|---|---|---|---|
2000-01-01 | 0.383691 | -0.500453 | 0.101632 | 0.848213 |
2000-01-02 | -1.048619 | 0.856605 | -0.295425 | 1.060710 |
2000-01-03 | -0.214918 | -1.989228 | 0.278514 | 1.088771 |
2000-01-04 | -2.326385 | -0.225754 | -1.331598 | 1.457230 |
2000-01-05 | 0.656919 | 1.081810 | 1.148303 | -0.089382 |
2000-01-06 | -1.041194 | 0.533706 | -1.084442 | 1.824709 |
2000-01-07 | -1.040706 | -2.336161 | 0.565496 | 0.269414 |
2000-01-08 | 0.166739 | -0.075381 | -0.951126 | -0.347865 |
Out[270]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | |
---|---|---|---|---|
2000-01-01 | 0.383691 | 0.000000 | 0.101632 | 0.848213 |
2000-01-02 | 0.000000 | 0.856605 | 0.000000 | 1.060710 |
2000-01-03 | 0.000000 | 0.000000 | 0.278514 | 1.088771 |
2000-01-04 | 0.000000 | 0.000000 | 0.000000 | 1.457230 |
2000-01-05 | 0.656919 | 1.081810 | 1.148303 | 0.000000 |
2000-01-06 | 0.000000 | 0.533706 | 0.000000 | 1.824709 |
2000-01-07 | 0.000000 | 0.000000 | 0.565496 | 0.269414 |
2000-01-08 | 0.166739 | 0.000000 | 0.000000 | 0.000000 |
In [271]:
# where 默认返回修改后的数据拷贝,原值不变;可以设置inplace参数,直接修改原值,而不是创建拷贝 df_orig = df.copy() df_orig.where(df > 0, -df, inplace=True) df_orig
Out[271]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | |
---|---|---|---|---|
2000-01-01 | 0.383691 | 0.500453 | 0.101632 | 0.848213 |
2000-01-02 | 1.048619 | 0.856605 | 0.295425 | 1.060710 |
2000-01-03 | 0.214918 | 1.989228 | 0.278514 | 1.088771 |
2000-01-04 | 2.326385 | 0.225754 | 1.331598 | 1.457230 |
2000-01-05 | 0.656919 | 1.081810 | 1.148303 | 0.089382 |
2000-01-06 | 1.041194 | 0.533706 | 1.084442 | 1.824709 |
2000-01-07 | 1.040706 | 2.336161 | 0.565496 | 0.269414 |
2000-01-08 | 0.166739 | 0.075381 | 0.951126 | 0.347865 |
In [272]:
# 注意 :pandas 和 numpy 的where方法不一样 # 一般的,df1.where(m, df2) 相当于 np.where(m, df1, df2) df.where(df < 0, -df) == np.where(df < 0, df, -df)
Out[272]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | |
---|---|---|---|---|
2000-01-01 | True | True | True | True |
2000-01-02 | True | True | True | True |
2000-01-03 | True | True | True | True |
2000-01-04 | True | True | True | True |
2000-01-05 | True | True | True | True |
2000-01-06 | True | True | True | True |
2000-01-07 | True | True | True | True |
2000-01-08 | True | True | True | True |
In [276]:
# alignment 定位,对齐 # where 可以选择局部(部分区域)的布尔条件 # This is analogous to partial setting via .loc (but on the contents rather than the axis labels) df2 = df.copy() df2 df2[1:4] # 行选择 df2.where(df2[1:4] > 0, 3) # 对不符合项的值进行赋值! df2[ df2[1:4] > 0 ] = 3 # 只定位部分区域,对符合项的值进行赋值 df2
Out[276]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | |
---|---|---|---|---|
2000-01-01 | 0.383691 | -0.500453 | 0.101632 | 0.848213 |
2000-01-02 | -1.048619 | 0.856605 | -0.295425 | 1.060710 |
2000-01-03 | -0.214918 | -1.989228 | 0.278514 | 1.088771 |
2000-01-04 | -2.326385 | -0.225754 | -1.331598 | 1.457230 |
2000-01-05 | 0.656919 | 1.081810 | 1.148303 | -0.089382 |
2000-01-06 | -1.041194 | 0.533706 | -1.084442 | 1.824709 |
2000-01-07 | -1.040706 | -2.336161 | 0.565496 | 0.269414 |
2000-01-08 | 0.166739 | -0.075381 | -0.951126 | -0.347865 |
Out[276]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | |
---|---|---|---|---|
2000-01-02 | -1.048619 | 0.856605 | -0.295425 | 1.060710 |
2000-01-03 | -0.214918 | -1.989228 | 0.278514 | 1.088771 |
2000-01-04 | -2.326385 | -0.225754 | -1.331598 | 1.457230 |
Out[276]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | |
---|---|---|---|---|
2000-01-01 | 3.0 | 3.000000 | 3.000000 | 3.000000 |
2000-01-02 | 3.0 | 0.856605 | 3.000000 | 1.060710 |
2000-01-03 | 3.0 | 3.000000 | 0.278514 | 1.088771 |
2000-01-04 | 3.0 | 3.000000 | 3.000000 | 1.457230 |
2000-01-05 | 3.0 | 3.000000 | 3.000000 | 3.000000 |
2000-01-06 | 3.0 | 3.000000 | 3.000000 | 3.000000 |
2000-01-07 | 3.0 | 3.000000 | 3.000000 | 3.000000 |
2000-01-08 | 3.0 | 3.000000 | 3.000000 | 3.000000 |
Out[276]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | |
---|---|---|---|---|
2000-01-01 | 0.383691 | -0.500453 | 0.101632 | 0.848213 |
2000-01-02 | -1.048619 | 3.000000 | -0.295425 | 3.000000 |
2000-01-03 | -0.214918 | -1.989228 | 3.000000 | 3.000000 |
2000-01-04 | -2.326385 | -0.225754 | -1.331598 | 3.000000 |
2000-01-05 | 0.656919 | 1.081810 | 1.148303 | -0.089382 |
2000-01-06 | -1.041194 | 0.533706 | -1.084442 | 1.824709 |
2000-01-07 | -1.040706 | -2.336161 | 0.565496 | 0.269414 |
2000-01-08 | 0.166739 | -0.075381 | -0.951126 | -0.347865 |
In [279]:
# Where can also accept axis and level parameters to align the input when performing the where. # where 可以接受 轴参数axis 和 级别参数level df2 = df.copy() df2 df2.where(df2>0,df2[‘A‘],axis=‘index‘) # 小于等于0的值,赋值为A列的值 df2 df2.apply(lambda x, y: x.where(x>0,y), y=df[‘A‘]) # 相当于上式,但此式较慢,同样不改变原值,而是生成一个拷贝copy df2
Out[279]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | |
---|---|---|---|---|
2000-01-01 | 0.383691 | -0.500453 | 0.101632 | 0.848213 |
2000-01-02 | -1.048619 | 0.856605 | -0.295425 | 1.060710 |
2000-01-03 | -0.214918 | -1.989228 | 0.278514 | 1.088771 |
2000-01-04 | -2.326385 | -0.225754 | -1.331598 | 1.457230 |
2000-01-05 | 0.656919 | 1.081810 | 1.148303 | -0.089382 |
2000-01-06 | -1.041194 | 0.533706 | -1.084442 | 1.824709 |
2000-01-07 | -1.040706 | -2.336161 | 0.565496 | 0.269414 |
2000-01-08 | 0.166739 | -0.075381 | -0.951126 | -0.347865 |
Out[279]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | |
---|---|---|---|---|
2000-01-01 | 0.383691 | 0.383691 | 0.101632 | 0.848213 |
2000-01-02 | -1.048619 | 0.856605 | -1.048619 | 1.060710 |
2000-01-03 | -0.214918 | -0.214918 | 0.278514 | 1.088771 |
2000-01-04 | -2.326385 | -2.326385 | -2.326385 | 1.457230 |
2000-01-05 | 0.656919 | 1.081810 | 1.148303 | 0.656919 |
2000-01-06 | -1.041194 | 0.533706 | -1.041194 | 1.824709 |
2000-01-07 | -1.040706 | -1.040706 | 0.565496 | 0.269414 |
2000-01-08 | 0.166739 | 0.166739 | 0.166739 | 0.166739 |
Out[279]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | |
---|---|---|---|---|
2000-01-01 | 0.383691 | -0.500453 | 0.101632 | 0.848213 |
2000-01-02 | -1.048619 | 0.856605 | -0.295425 | 1.060710 |
2000-01-03 | -0.214918 | -1.989228 | 0.278514 | 1.088771 |
2000-01-04 | -2.326385 | -0.225754 | -1.331598 | 1.457230 |
2000-01-05 | 0.656919 | 1.081810 | 1.148303 | -0.089382 |
2000-01-06 | -1.041194 | 0.533706 | -1.084442 | 1.824709 |
2000-01-07 | -1.040706 | -2.336161 | 0.565496 | 0.269414 |
2000-01-08 | 0.166739 | -0.075381 | -0.951126 | -0.347865 |
Out[279]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | |
---|---|---|---|---|
2000-01-01 | 0.383691 | 0.383691 | 0.101632 | 0.848213 |
2000-01-02 | -1.048619 | 0.856605 | -1.048619 | 1.060710 |
2000-01-03 | -0.214918 | -0.214918 | 0.278514 | 1.088771 |
2000-01-04 | -2.326385 | -2.326385 | -2.326385 | 1.457230 |
2000-01-05 | 0.656919 | 1.081810 | 1.148303 | 0.656919 |
2000-01-06 | -1.041194 | 0.533706 | -1.041194 | 1.824709 |
2000-01-07 | -1.040706 | -1.040706 | 0.565496 | 0.269414 |
2000-01-08 | 0.166739 | 0.166739 | 0.166739 | 0.166739 |
Out[279]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | |
---|---|---|---|---|
2000-01-01 | 0.383691 | -0.500453 | 0.101632 | 0.848213 |
2000-01-02 | -1.048619 | 0.856605 | -0.295425 | 1.060710 |
2000-01-03 | -0.214918 | -1.989228 | 0.278514 | 1.088771 |
2000-01-04 | -2.326385 | -0.225754 | -1.331598 | 1.457230 |
2000-01-05 | 0.656919 | 1.081810 | 1.148303 | -0.089382 |
2000-01-06 | -1.041194 | 0.533706 | -1.084442 | 1.824709 |
2000-01-07 | -1.040706 | -2.336161 | 0.565496 | 0.269414 |
2000-01-08 | 0.166739 | -0.075381 | -0.951126 | -0.347865 |
In [280]:
# where 可以接受一个函数调用,此函数只能有一个参数,且返回有效的布尔条件 df3 = pd.DataFrame({‘A‘: [1, 2, 3],‘B‘: [4, 5, 6],‘C‘: [7, 8, 9]}) df3 df3.where(lambda x: x > 4, lambda x: x + 10) # x<=4 的值 赋值为 x+10
Out[280]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | |
---|---|---|---|
0 | 1 | 4 | 7 |
1 | 2 | 5 | 8 |
2 | 3 | 6 | 9 |
Out[280]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | |
---|---|---|---|
0 | 11 | 14 | 7 |
1 | 12 | 5 | 8 |
2 | 13 | 6 | 9 |
In [282]:
# mask 遮罩 mask is the inverse boolean operation of where. 反向的布尔值操作 s s.mask(s >= 0) # 选择<0 的值, 不符合项 置为nan df df.mask(df >= 0)
Out[282]:
4 0 3 1 2 2 1 3 0 4 dtype: int64
Out[282]:
4 NaN 3 NaN 2 NaN 1 NaN 0 NaN dtype: float64
Out[282]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | |
---|---|---|---|---|
2000-01-01 | 0.383691 | -0.500453 | 0.101632 | 0.848213 |
2000-01-02 | -1.048619 | 0.856605 | -0.295425 | 1.060710 |
2000-01-03 | -0.214918 | -1.989228 | 0.278514 | 1.088771 |
2000-01-04 | -2.326385 | -0.225754 | -1.331598 | 1.457230 |
2000-01-05 | 0.656919 | 1.081810 | 1.148303 | -0.089382 |
2000-01-06 | -1.041194 | 0.533706 | -1.084442 | 1.824709 |
2000-01-07 | -1.040706 | -2.336161 | 0.565496 | 0.269414 |
2000-01-08 | 0.166739 | -0.075381 | -0.951126 | -0.347865 |
Out[282]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | |
---|---|---|---|---|
2000-01-01 | NaN | -0.500453 | NaN | NaN |
2000-01-02 | -1.048619 | NaN | -0.295425 | NaN |
2000-01-03 | -0.214918 | -1.989228 | NaN | NaN |
2000-01-04 | -2.326385 | -0.225754 | -1.331598 | NaN |
2000-01-05 | NaN | NaN | NaN | -0.089382 |
2000-01-06 | -1.041194 | NaN | -1.084442 | NaN |
2000-01-07 | -1.040706 | -2.336161 | NaN | NaN |
2000-01-08 | NaN | -0.075381 | -0.951126 | -0.347865 |
In [288]:
# The query() Method (Experimental) 对 DataFrame对象 使用表达式进行选择 # 例如 :选择b列中 在a列和c列两值中间的 行,a<b<c n = 10 df = pd.DataFrame(np.random.rand(n, 3), columns=list(‘abc‘)) df
Out[288]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | |
---|---|---|---|
0 | 0.283094 | 0.051807 | 0.126487 |
1 | 0.020097 | 0.373023 | 0.147193 |
2 | 0.091921 | 0.830956 | 0.143214 |
3 | 0.340304 | 0.527246 | 0.709769 |
4 | 0.651722 | 0.344524 | 0.151233 |
5 | 0.396685 | 0.524376 | 0.540237 |
6 | 0.502751 | 0.627708 | 0.708038 |
7 | 0.472338 | 0.269770 | 0.586165 |
8 | 0.937522 | 0.239560 | 0.861873 |
9 | 0.661879 | 0.465536 | 0.271580 |
In [289]:
# pure python df[(df.a < df.b) & (df.b < df.c)]
Out[289]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | |
---|---|---|---|
3 | 0.340304 | 0.527246 | 0.709769 |
5 | 0.396685 | 0.524376 | 0.540237 |
6 | 0.502751 | 0.627708 | 0.708038 |
In [290]:
# query,传入的是str表达式 df.query(‘(a < b) & (b < c)‘) # 比纯py慢?!
Out[290]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | |
---|---|---|---|
3 | 0.340304 | 0.527246 | 0.709769 |
5 | 0.396685 | 0.524376 | 0.540237 |
6 | 0.502751 | 0.627708 | 0.708038 |
In [302]:
# 对于命名的index索引是低效的,比利用列名称 # 而且如果索引的名称和列名同名,列名优先 df = pd.DataFrame(np.random.randint(n / 2, size=(n, 2)), columns=list(‘bc‘)) # df df.index.name = "a" df
Out[302]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
b | c | |
---|---|---|
a | ||
0 | 0 | 4 |
1 | 1 | 2 |
2 | 3 | 0 |
3 | 0 | 3 |
4 | 4 | 3 |
5 | 0 | 0 |
6 | 0 | 4 |
7 | 1 | 4 |
8 | 3 | 0 |
9 | 1 | 4 |
In [303]:
df.query(‘a <= b and b <= c‘)
Out[303]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
b | c | |
---|---|---|
a | ||
0 | 0 | 4 |
1 | 1 | 2 |
In [305]:
# 可以不使用索引的名称,而是直接用index,这样同时可以避免与列名重名 df.query(‘index <= b <= c‘)
Out[305]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
b | c | |
---|---|---|
a | ||
0 | 0 | 4 |
1 | 1 | 2 |
In [307]:
# MultiIndex query() Syntax # 对于多重索引 n = 10 colors = np.random.choice([‘red‘, ‘green‘], size=n) colors foods = np.random.choice([‘eggs‘, ‘ham‘], size=n) foods
Out[307]:
array([‘green‘, ‘green‘, ‘green‘, ‘green‘, ‘green‘, ‘green‘, ‘green‘, ‘red‘, ‘green‘, ‘green‘], dtype=‘<U5‘)
Out[307]:
array([‘ham‘, ‘eggs‘, ‘eggs‘, ‘eggs‘, ‘eggs‘, ‘ham‘, ‘eggs‘, ‘eggs‘, ‘ham‘, ‘ham‘], dtype=‘<U4‘)
In [308]:
index = pd.MultiIndex.from_arrays([colors, foods], names=[‘color‘, ‘food‘]) index df = pd.DataFrame(np.random.randn(n, 2), index=index) df
Out[308]:
MultiIndex(levels=[[‘green‘, ‘red‘], [‘eggs‘, ‘ham‘]], labels=[[0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 1, 1]], names=[‘color‘, ‘food‘])
Out[308]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
0 | 1 | ||
---|---|---|---|
color | food | ||
green | ham | -0.295761 | 1.399719 |
eggs | 1.807185 | 0.498136 | |
eggs | -0.119640 | 2.279162 | |
eggs | -0.238709 | -0.650418 | |
eggs | 2.235827 | 1.066954 | |
ham | 1.156794 | 1.694717 | |
eggs | -0.037158 | -0.529213 | |
red | eggs | 0.046799 | 0.763592 |
green | ham | 0.488240 | -0.455112 |
ham | -0.169486 | -0.646891 |
In [309]:
df.query(‘color == "red"‘)
Out[309]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
0 | 1 | ||
---|---|---|---|
color | food | ||
red | eggs | 0.046799 | 0.763592 |
In [310]:
# 如果多重索引没有命名 可以使用特殊的名字 df.index.names = [None, None] df df.query(‘ilevel_0 == "red"‘) # The convention is ilevel_0, which means “index level 0” for the 0th level of the index.
Out[310]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
0 | 1 | ||
---|---|---|---|
green | ham | -0.295761 | 1.399719 |
eggs | 1.807185 | 0.498136 | |
eggs | -0.119640 | 2.279162 | |
eggs | -0.238709 | -0.650418 | |
eggs | 2.235827 | 1.066954 | |
ham | 1.156794 | 1.694717 | |
eggs | -0.037158 | -0.529213 | |
red | eggs | 0.046799 | 0.763592 |
green | ham | 0.488240 | -0.455112 |
ham | -0.169486 | -0.646891 |
Out[310]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
0 | 1 | ||
---|---|---|---|
red | eggs | 0.046799 | 0.763592 |
In [ ]:
# query() Use Cases 使用示例 # A use case for query() is when you have a collection of DataFrame objects # that have a subset of column names (or index levels/names) in common. ## 有公共列名称子集的df # You can pass the same query to both frames # without having to specify which frame you’re interested in querying. ## 传入同样的query
In [311]:
df = pd.DataFrame(np.random.rand(n, 3), columns=list(‘abc‘)) df2 = pd.DataFrame(np.random.rand(n + 2, 3), columns=df.columns) df df2
Out[311]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | |
---|---|---|---|
0 | 0.096087 | 0.799309 | 0.112070 |
1 | 0.083101 | 0.505151 | 0.830588 |
2 | 0.501472 | 0.692792 | 0.663570 |
3 | 0.872821 | 0.442541 | 0.904903 |
4 | 0.513651 | 0.375617 | 0.786898 |
5 | 0.184368 | 0.285290 | 0.055147 |
6 | 0.284951 | 0.243556 | 0.732871 |
7 | 0.431525 | 0.676385 | 0.458296 |
8 | 0.743057 | 0.326079 | 0.434655 |
9 | 0.610921 | 0.717639 | 0.580765 |
Out[311]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | |
---|---|---|---|
0 | 0.804932 | 0.533058 | 0.713190 |
1 | 0.305893 | 0.460048 | 0.879321 |
2 | 0.344438 | 0.970870 | 0.685098 |
3 | 0.348010 | 0.839449 | 0.799309 |
4 | 0.844713 | 0.267562 | 0.771202 |
5 | 0.403534 | 0.088786 | 0.950782 |
6 | 0.181616 | 0.567118 | 0.989711 |
7 | 0.363736 | 0.852080 | 0.140771 |
8 | 0.866127 | 0.285365 | 0.025491 |
9 | 0.329751 | 0.121716 | 0.782729 |
10 | 0.029253 | 0.419409 | 0.051255 |
11 | 0.057406 | 0.106595 | 0.559687 |
In [315]:
expr = ‘0.0 <= a <= c <= 0.5‘ mp = map(lambda frame: frame.query(expr), [df, df2]) # 同一个表达式,作用在有同样列名的多个df上
In [316]:
for i in mp: print(i)
a b c 0 0.096087 0.799309 0.112070 7 0.431525 0.676385 0.458296 a b c 10 0.029253 0.419409 0.051255
In [317]:
# query() Python versus pandas Syntax Comparison # Full numpy-like syntax df = pd.DataFrame(np.random.randint(n, size=(n, 3)), columns=list(‘abc‘)) df
Out[317]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | |
---|---|---|---|
0 | 8 | 4 | 5 |
1 | 7 | 4 | 7 |
2 | 9 | 3 | 2 |
3 | 4 | 8 | 7 |
4 | 4 | 5 | 8 |
5 | 7 | 8 | 8 |
6 | 1 | 7 | 6 |
7 | 5 | 9 | 1 |
8 | 3 | 3 | 8 |
9 | 7 | 1 | 5 |
In [318]:
df.query(‘(a < b) & (b < c)‘) df[(df.a < df.b) & (df.b < df.c)]
Out[318]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | |
---|---|---|---|
4 | 4 | 5 | 8 |
Out[318]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | |
---|---|---|---|
4 | 4 | 5 | 8 |
In [319]:
# 几种其他的不同的写法 df.query(‘a < b & b < c‘) # 去掉括号 df.query(‘a < b and b < c‘) # 使用英文and df.query(‘a < b < c‘) # 连写,优雅的表达
Out[319]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | |
---|---|---|---|
4 | 4 | 5 | 8 |
Out[319]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | |
---|---|---|---|
4 | 4 | 5 | 8 |
Out[319]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | |
---|---|---|---|
4 | 4 | 5 | 8 |
In [320]:
# The in and not in operators # get all rows where columns "a" and "b" have overlapping values # 得到a列和b列有重叠值的行,a列中的值在 in b列的值中 df = pd.DataFrame({‘a‘: list(‘aabbccddeeff‘), ‘b‘: list(‘aaaabbbbcccc‘), ‘c‘: np.random.randint(5, size=12), ‘d‘: np.random.randint(9, size=12)}) df
Out[320]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | d | |
---|---|---|---|---|
0 | a | a | 0 | 2 |
1 | a | a | 0 | 6 |
2 | b | a | 3 | 3 |
3 | b | a | 1 | 2 |
4 | c | b | 1 | 2 |
5 | c | b | 1 | 2 |
6 | d | b | 3 | 8 |
7 | d | b | 1 | 0 |
8 | e | c | 2 | 7 |
9 | e | c | 0 | 1 |
10 | f | c | 0 | 1 |
11 | f | c | 3 | 1 |
In [323]:
df.query(‘a in b‘) # 第一次运行113ms 第二次明显加快 25ms
Out[323]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | d | |
---|---|---|---|---|
0 | a | a | 0 | 2 |
1 | a | a | 0 | 6 |
2 | b | a | 3 | 3 |
3 | b | a | 1 | 2 |
4 | c | b | 1 | 2 |
5 | c | b | 1 | 2 |
In [324]:
df[df.a.isin(df.b)] # How you‘d do it in pure Python 仍然比query快 35ms
Out[324]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | d | |
---|---|---|---|---|
0 | a | a | 0 | 2 |
1 | a | a | 0 | 6 |
2 | b | a | 3 | 3 |
3 | b | a | 1 | 2 |
4 | c | b | 1 | 2 |
5 | c | b | 1 | 2 |
In [325]:
df[~df.a.isin(df.b)]
Out[325]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | d | |
---|---|---|---|---|
6 | d | b | 3 | 8 |
7 | d | b | 1 | 0 |
8 | e | c | 2 | 7 |
9 | e | c | 0 | 1 |
10 | f | c | 0 | 1 |
11 | f | c | 3 | 1 |
In [326]:
df.query(‘a not in b‘)
Out[326]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | d | |
---|---|---|---|---|
6 | d | b | 3 | 8 |
7 | d | b | 1 | 0 |
8 | e | c | 2 | 7 |
9 | e | c | 0 | 1 |
10 | f | c | 0 | 1 |
11 | f | c | 3 | 1 |
In [328]:
# rows where cols a and b have overlapping values and col c‘s values are less than col d‘s df.query(‘a in b and c < d‘) df[df.a.isin(df.b) & (df.c < df.d)]
Out[328]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | d | |
---|---|---|---|---|
0 | a | a | 0 | 2 |
1 | a | a | 0 | 6 |
3 | b | a | 1 | 2 |
4 | c | b | 1 | 2 |
5 | c | b | 1 | 2 |
Out[328]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | d | |
---|---|---|---|---|
0 | a | a | 0 | 2 |
1 | a | a | 0 | 6 |
3 | b | a | 1 | 2 |
4 | c | b | 1 | 2 |
5 | c | b | 1 | 2 |
In [ ]:
# 注意:????? # Note that in and not in are evaluated in Python, since numexpr has no equivalent of this operation. # However, only the in/not in expression itself is evaluated in vanilla Python. # For example, in the expression df.query(‘a in b + c + d‘) # (b + c + d) is evaluated by numexpr and then the in operation is evaluated in plain Python. In general, any operations that can be evaluated using numexpr will be.
In [329]:
# Special use of the == operator with list objects # 特别的用法,== 用于list # Comparing a list of values to a column using ==/!= works similarly to in/not in # 用==/!=比较列表的值与列的值,类似于in/not in df
Out[329]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | d | |
---|---|---|---|---|
0 | a | a | 0 | 2 |
1 | a | a | 0 | 6 |
2 | b | a | 3 | 3 |
3 | b | a | 1 | 2 |
4 | c | b | 1 | 2 |
5 | c | b | 1 | 2 |
6 | d | b | 3 | 8 |
7 | d | b | 1 | 0 |
8 | e | c | 2 | 7 |
9 | e | c | 0 | 1 |
10 | f | c | 0 | 1 |
11 | f | c | 3 | 1 |
In [330]:
df.query(‘b == ["a", "b", "c"]‘) # b列中有列表中值的
Out[330]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | d | |
---|---|---|---|---|
0 | a | a | 0 | 2 |
1 | a | a | 0 | 6 |
2 | b | a | 3 | 3 |
3 | b | a | 1 | 2 |
4 | c | b | 1 | 2 |
5 | c | b | 1 | 2 |
6 | d | b | 3 | 8 |
7 | d | b | 1 | 0 |
8 | e | c | 2 | 7 |
9 | e | c | 0 | 1 |
10 | f | c | 0 | 1 |
11 | f | c | 3 | 1 |
In [332]:
df.query(‘c == [1, 2]‘) df.query(‘[1, 2] in c‘) df[df.c.isin([1, 2])]
Out[332]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | d | |
---|---|---|---|---|
3 | b | a | 1 | 2 |
4 | c | b | 1 | 2 |
5 | c | b | 1 | 2 |
7 | d | b | 1 | 0 |
8 | e | c | 2 | 7 |
Out[332]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | d | |
---|---|---|---|---|
3 | b | a | 1 | 2 |
4 | c | b | 1 | 2 |
5 | c | b | 1 | 2 |
7 | d | b | 1 | 0 |
8 | e | c | 2 | 7 |
Out[332]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | d | |
---|---|---|---|---|
3 | b | a | 1 | 2 |
4 | c | b | 1 | 2 |
5 | c | b | 1 | 2 |
7 | d | b | 1 | 0 |
8 | e | c | 2 | 7 |
In [333]:
# Boolean Operators 布尔操作符 # ~ 或 not df = pd.DataFrame(np.random.rand(n, 3), columns=list(‘abc‘)) df df[‘bools‘] = np.random.rand(len(df)) > 0.5 df
Out[333]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | |
---|---|---|---|
0 | 0.528671 | 0.265870 | 0.932892 |
1 | 0.520069 | 0.047895 | 0.478818 |
2 | 0.648595 | 0.180744 | 0.838445 |
3 | 0.145614 | 0.906190 | 0.762163 |
4 | 0.612637 | 0.027232 | 0.778020 |
5 | 0.640565 | 0.535538 | 0.018280 |
6 | 0.633664 | 0.124654 | 0.185709 |
7 | 0.635088 | 0.377300 | 0.914968 |
8 | 0.702684 | 0.504459 | 0.107014 |
9 | 0.635757 | 0.261144 | 0.665611 |
Out[333]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | bools | |
---|---|---|---|---|
0 | 0.528671 | 0.265870 | 0.932892 | False |
1 | 0.520069 | 0.047895 | 0.478818 | True |
2 | 0.648595 | 0.180744 | 0.838445 | True |
3 | 0.145614 | 0.906190 | 0.762163 | False |
4 | 0.612637 | 0.027232 | 0.778020 | True |
5 | 0.640565 | 0.535538 | 0.018280 | True |
6 | 0.633664 | 0.124654 | 0.185709 | True |
7 | 0.635088 | 0.377300 | 0.914968 | True |
8 | 0.702684 | 0.504459 | 0.107014 | False |
9 | 0.635757 | 0.261144 | 0.665611 | False |
In [334]:
df.query(‘~bools‘) df.query(‘not bools‘)
Out[334]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | bools | |
---|---|---|---|---|
0 | 0.528671 | 0.265870 | 0.932892 | False |
3 | 0.145614 | 0.906190 | 0.762163 | False |
8 | 0.702684 | 0.504459 | 0.107014 | False |
9 | 0.635757 | 0.261144 | 0.665611 | False |
Out[334]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | bools | |
---|---|---|---|---|
0 | 0.528671 | 0.265870 | 0.932892 | False |
3 | 0.145614 | 0.906190 | 0.762163 | False |
8 | 0.702684 | 0.504459 | 0.107014 | False |
9 | 0.635757 | 0.261144 | 0.665611 | False |
In [335]:
# 任意组合布尔表达式 shorter = df.query(‘a < b < c and (not bools) or bools > 2‘) # short query syntax longer = df[(df.a < df.b) & (df.b < df.c) & (~df.bools) | (df.bools > 2)] # equivalent in pure Python shorter longer
Out[335]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | bools |
---|
Out[335]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | bools |
---|
In [ ]:
# Performance of query() # DataFrame.query() using numexpr is slightly faster than Python for large frames # Note : You will only see the performance benefits of using the numexpr engine with DataFrame.query() # if your frame has more than approximately 200,000 rows # query() 效能在大数据时高于数字表达式
In [ ]:
# Duplicate Data # 识别和剔除重复数据,两个方法:duplicated and drop_duplicates,他们的参数都是列 # duplicated 返回布尔向量,标示重复的行 # drop_duplicates 删除重复列 # 默认保留第一个找到的值,但可以通过keep参数指定保留的值 # keep=‘first‘ (default): mark / drop duplicates except for the first occurrence. 只保留第一个 # keep=‘last‘: mark / drop duplicates except for the last occurrence. 只保留最后一个重复值 # keep=False: mark / drop all duplicates. 剔除所有重复值
In [336]:
df2 = pd.DataFrame({‘a‘: [‘one‘, ‘one‘, ‘two‘, ‘two‘, ‘two‘, ‘three‘, ‘four‘], ‘b‘: [‘x‘, ‘y‘, ‘x‘, ‘y‘, ‘x‘, ‘x‘, ‘x‘], ‘c‘: np.random.randn(7)}) df2
Out[336]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | |
---|---|---|---|
0 | one | x | 2.206877 |
1 | one | y | -1.852209 |
2 | two | x | -0.706555 |
3 | two | y | -1.007860 |
4 | two | x | -0.185356 |
5 | three | x | -0.687592 |
6 | four | x | -2.052029 |
In [338]:
df2.duplicated(‘a‘) df2.duplicated("a", keep="last") df2.duplicated(‘a‘, keep=False)
Out[338]:
0 False 1 True 2 False 3 True 4 True 5 False 6 False dtype: bool
Out[338]:
0 True 1 False 2 True 3 True 4 False 5 False 6 False dtype: bool
Out[338]:
0 True 1 True 2 True 3 True 4 True 5 False 6 False dtype: bool
In [339]:
df2.drop_duplicates(‘a‘) df2.drop_duplicates(‘a‘, keep="last") df2.drop_duplicates(‘a‘, keep=False)
Out[339]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | |
---|---|---|---|
0 | one | x | 2.206877 |
2 | two | x | -0.706555 |
5 | three | x | -0.687592 |
6 | four | x | -2.052029 |
Out[339]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | |
---|---|---|---|
1 | one | y | -1.852209 |
4 | two | x | -0.185356 |
5 | three | x | -0.687592 |
6 | four | x | -2.052029 |
Out[339]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | |
---|---|---|---|
5 | three | x | -0.687592 |
6 | four | x | -2.052029 |
In [340]:
# 传入一个列表作为参数 df2.duplicated([‘a‘, ‘b‘]) # a b 两列看做一个整体,标示重复值 df2.drop_duplicates([‘a‘, ‘b‘])
Out[340]:
0 False 1 False 2 False 3 False 4 True 5 False 6 False dtype: bool
Out[340]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | |
---|---|---|---|
0 | one | x | 2.206877 |
1 | one | y | -1.852209 |
2 | two | x | -0.706555 |
3 | two | y | -1.007860 |
5 | three | x | -0.687592 |
6 | four | x | -2.052029 |
In [342]:
# index索引去重 index.duplicated df3 = pd.DataFrame({‘a‘: np.arange(6),‘b‘: np.random.randn(6)},index=[‘a‘, ‘a‘, ‘b‘, ‘c‘, ‘b‘, ‘a‘]) df3
Out[342]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | |
---|---|---|
a | 0 | 1.446937 |
a | 1 | -1.740284 |
b | 2 | -0.604590 |
c | 3 | 0.096239 |
b | 4 | 0.823314 |
a | 5 | 1.990803 |
In [343]:
df3.index.duplicated() df3[~df3.index.duplicated()] df3[~df3.index.duplicated(keep=‘last‘)] df3[~df3.index.duplicated(keep=False)]
Out[343]:
array([False, True, False, False, True, True])
Out[343]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | |
---|---|---|
a | 0 | 1.446937 |
b | 2 | -0.604590 |
c | 3 | 0.096239 |
Out[343]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | |
---|---|---|
c | 3 | 0.096239 |
b | 4 | 0.823314 |
a | 5 | 1.990803 |
Out[343]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | |
---|---|---|
c | 3 | 0.096239 |
In [344]:
# Dictionary-like get() method get方法 # Each of Series, DataFrame, and Panel have a get method which can return a default value. s = pd.Series([1,2,3], index=[‘a‘,‘b‘,‘c‘]) s.get("a") # 相当于s["a"] s.get("x", default=-1) # 可以对不存在的index赋值
Out[344]:
1
Out[344]:
-1
In [345]:
# The lookup() Method # 按一定的顺序取得行/列的值 dflookup = pd.DataFrame(np.random.rand(20,4), columns = [‘A‘,‘B‘,‘C‘,‘D‘]) dflookup
Out[345]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | C | D | |
---|---|---|---|---|
0 | 0.942679 | 0.727316 | 0.658345 | 0.465770 |
1 | 0.437278 | 0.225158 | 0.436522 | 0.164805 |
2 | 0.270947 | 0.280223 | 0.309800 | 0.015967 |
3 | 0.559836 | 0.630962 | 0.673678 | 0.712503 |
4 | 0.535372 | 0.989887 | 0.661567 | 0.361962 |
5 | 0.726322 | 0.601192 | 0.547858 | 0.477509 |
6 | 0.829411 | 0.583613 | 0.871647 | 0.460966 |
7 | 0.365722 | 0.563660 | 0.164954 | 0.134314 |
8 | 0.817334 | 0.523003 | 0.684492 | 0.369386 |
9 | 0.710906 | 0.693633 | 0.618877 | 0.888263 |
10 | 0.026953 | 0.185217 | 0.746235 | 0.568846 |
11 | 0.192765 | 0.927200 | 0.431736 | 0.084300 |
12 | 0.988460 | 0.784320 | 0.180145 | 0.039405 |
13 | 0.233349 | 0.148678 | 0.888210 | 0.004917 |
14 | 0.105130 | 0.146724 | 0.261370 | 0.936558 |
15 | 0.701224 | 0.791860 | 0.420083 | 0.391538 |
16 | 0.290186 | 0.307993 | 0.139429 | 0.618879 |
17 | 0.182132 | 0.174420 | 0.845501 | 0.647986 |
18 | 0.732009 | 0.919950 | 0.197361 | 0.582814 |
19 | 0.568096 | 0.539125 | 0.269016 | 0.537584 |
In [347]:
list(range(0,10,2)) dflookup.lookup(list(range(0,10,2)), [‘B‘,‘C‘,‘A‘,‘B‘,‘D‘])
Out[347]:
[0, 2, 4, 6, 8]
Out[347]:
array([0.72731646, 0.30979986, 0.53537223, 0.58361289, 0.36938598])
In [348]:
# index objets 索引对象 # 索引可以通过list或其他序列对象直接创建 index = pd.Index([‘e‘, ‘d‘, ‘a‘, ‘b‘]) index # 可以命名 index = pd.Index([‘e‘, ‘d‘, ‘a‘, ‘b‘], name=‘something‘) index.name index
Out[348]:
Index([‘e‘, ‘d‘, ‘a‘, ‘b‘], dtype=‘object‘)
Out[348]:
‘something‘
Out[348]:
Index([‘e‘, ‘d‘, ‘a‘, ‘b‘], dtype=‘object‘, name=‘something‘)
In [349]:
index = pd.Index(list(range(5)), name=‘rows‘) index columns = pd.Index([‘A‘, ‘B‘, ‘C‘], name=‘cols‘) columns
Out[349]:
Int64Index([0, 1, 2, 3, 4], dtype=‘int64‘, name=‘rows‘)
Out[349]:
Index([‘A‘, ‘B‘, ‘C‘], dtype=‘object‘, name=‘cols‘)
In [350]:
df = pd.DataFrame(np.random.randn(5, 3), index=index, columns=columns) # 使用索引给列命名,列名是一个索引对象 df
Out[350]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
cols | A | B | C |
---|---|---|---|
rows | |||
0 | 1.868165 | 0.704614 | -2.049472 |
1 | -0.878810 | 0.706876 | -0.741121 |
2 | -2.649523 | -0.952211 | 0.806387 |
3 | 0.369280 | -0.052788 | -0.995775 |
4 | 0.218246 | -0.034493 | -0.198815 |
In [351]:
# Setting metadata 设置元数据 # 索引“多半”是“不可变”,但是可以设置和改变其元数据,比如索引的名称,或者,多重索引的级别和标签 # 可以使用 rename, set_names, set_levels, and set_labels 设置这些属性。 # 默认返回一个拷贝(不修改原值),也可以就地修改in place ind = pd.Index([1, 2, 3]) ind
Out[351]:
Int64Index([1, 2, 3], dtype=‘int64‘)
In [359]:
ind.name = "ind" ind ind.rename("apple") ind ind.name = "apple" ind ind.set_names(["bob"], inplace=True) ind
Out[359]:
Int64Index([1, 2, 3], dtype=‘int64‘, name=‘ind‘)
Out[359]:
Int64Index([1, 2, 3], dtype=‘int64‘, name=‘apple‘)
Out[359]:
Int64Index([1, 2, 3], dtype=‘int64‘, name=‘ind‘)
Out[359]:
Int64Index([1, 2, 3], dtype=‘int64‘, name=‘apple‘)
Out[359]:
Int64Index([1, 2, 3], dtype=‘int64‘, name=‘bob‘)
In [361]:
# set_names, set_levels, and set_labels also take an optional level` argument # df.query(‘ilevel_0 == "red"‘) 在query中使用 ilevel_0 …… index = pd.MultiIndex.from_product([range(3), [‘one‘, ‘two‘]], names=[‘first‘, ‘second‘]) index
Out[361]:
MultiIndex(levels=[[0, 1, 2], [‘one‘, ‘two‘]], labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]], names=[‘first‘, ‘second‘])
In [362]:
index.levels[1] index.levels[0] index.set_levels(["a", "b"], level=1)
Out[362]:
Index([‘one‘, ‘two‘], dtype=‘object‘, name=‘second‘)
Out[362]:
Int64Index([0, 1, 2], dtype=‘int64‘, name=‘first‘)
Out[362]:
MultiIndex(levels=[[0, 1, 2], [‘a‘, ‘b‘]], labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]], names=[‘first‘, ‘second‘])
In [366]:
# Set operations on Index objects 索引对象中的集合操作 # Note: The resulting index from a set operation will be sorted in ascending order. # 注意: 索引的集合操作返回的是升序排序后的结果 a = pd.Index([‘c‘, ‘b‘, ‘a‘]) b = pd.Index([‘c‘, ‘e‘, ‘d‘]) a | b # 并集 a & b # 交集 # a - b # 不支持 a.difference(b) # 差集,非对称 a.symmetric_difference(b) # 对称差集,相当于idx1.difference(idx2).union(idx2.difference(idx1)) a ^ b # 对称差集
Out[366]:
Index([‘a‘, ‘b‘, ‘c‘, ‘d‘, ‘e‘], dtype=‘object‘)
Out[366]:
Index([‘c‘], dtype=‘object‘)
Out[366]:
Index([‘a‘, ‘b‘], dtype=‘object‘)
Out[366]:
Index([‘a‘, ‘b‘, ‘d‘, ‘e‘], dtype=‘object‘)
Out[366]:
Index([‘a‘, ‘b‘, ‘d‘, ‘e‘], dtype=‘object‘)
In [367]:
# Missing values 缺失值 # 注意:索引能够容纳缺失值,但是应该避免这样的情况。因为可能出现不可预料的结果,例如有些操作默认排除缺失值。 idx1 = pd.Index([1, np.nan, 3, 4]) idx1
Out[367]:
Float64Index([1.0, nan, 3.0, 4.0], dtype=‘float64‘)
In [368]:
idx1.fillna(2) # 缺失值赋值为2,nan的index赋值为2
Out[368]:
Float64Index([1.0, 2.0, 3.0, 4.0], dtype=‘float64‘)
In [372]:
idx2 = pd.DatetimeIndex([pd.Timestamp(‘2011-01-01‘), pd.NaT, pd.Timestamp(‘2011-01-03‘)]) # pd的缺失值是NaT,与np不同 idx2
Out[372]:
DatetimeIndex([‘2011-01-01‘, ‘NaT‘, ‘2011-01-03‘], dtype=‘datetime64[ns]‘, freq=None)
In [373]:
idx2.fillna(pd.Timestamp(‘2011-01-02‘))
Out[373]:
DatetimeIndex([‘2011-01-01‘, ‘2011-01-02‘, ‘2011-01-03‘], dtype=‘datetime64[ns]‘, freq=None)
In [398]:
# Set / Reset Index 设置/重设索引 # DataFrame data = pd.DataFrame({"a":["bar", "bar", "foo", "foo"], "b":["one","two","one","two"], "c":["z","y","x", "w"], "d":range(1,5)}) # range 不用list data
Out[398]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | d | |
---|---|---|---|---|
0 | bar | one | z | 1 |
1 | bar | two | y | 2 |
2 | foo | one | x | 3 |
3 | foo | two | w | 4 |
In [377]:
indexed1 = data.set_index("c") # 把df的某列设置为index索引 indexed1
Out[377]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | d | |
---|---|---|---|
c | |||
z | bar | one | 1 |
y | bar | two | 2 |
x | foo | one | 3 |
w | foo | two | 4 |
In [378]:
indexed2 = data.set_index([‘a‘, ‘b‘]) # 把df的多列设置为多重索引 indexed2
Out[378]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
c | d | ||
---|---|---|---|
a | b | ||
bar | one | z | 1 |
two | y | 2 | |
foo | one | x | 3 |
two | w | 4 |
In [379]:
frame = data.set_index(‘c‘, drop=False) # drop参数,可以设置索引时不删除列,默认为删除列 frame frame = frame.set_index([‘a‘, ‘b‘], append=True) # append参数,在原有索引的基础上,增加索引,变成复合索引 frame
Out[379]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | d | |
---|---|---|---|---|
c | ||||
z | bar | one | z | 1 |
y | bar | two | y | 2 |
x | foo | one | x | 3 |
w | foo | two | w | 4 |
Out[379]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
c | d | |||
---|---|---|---|---|
c | a | b | ||
z | bar | one | z | 1 |
y | bar | two | y | 2 |
x | foo | one | x | 3 |
w | foo | two | w | 4 |
In [380]:
data.set_index(‘c‘, drop=False) # 把某列设为索引,但不删除 data data.set_index([‘a‘, ‘b‘], inplace=True) # 就地修改,而不是返回拷贝 data
Out[380]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | d | |
---|---|---|---|---|
c | ||||
z | bar | one | z | 1 |
y | bar | two | y | 2 |
x | foo | one | x | 3 |
w | foo | two | w | 4 |
Out[380]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | d | |
---|---|---|---|---|
0 | bar | one | z | 1 |
1 | bar | two | y | 2 |
2 | foo | one | x | 3 |
3 | foo | two | w | 4 |
Out[380]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
c | d | ||
---|---|---|---|
a | b | ||
bar | one | z | 1 |
two | y | 2 | |
foo | one | x | 3 |
two | w | 4 |
In [381]:
# Reset the index 重置索引 # Note: The reset_index method used to be called delevel which is now deprecated. 不推荐使用delevel data data.index.name # 无返回值? data.index.names # 索引列的名称 data.reset_index() # 重置索引,原索引变为普通列,原索引名称变为列名
Out[381]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
c | d | ||
---|---|---|---|
a | b | ||
bar | one | z | 1 |
two | y | 2 | |
foo | one | x | 3 |
two | w | 4 |
Out[381]:
FrozenList([‘a‘, ‘b‘])
Out[381]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | d | |
---|---|---|---|---|
0 | bar | one | z | 1 |
1 | bar | two | y | 2 |
2 | foo | one | x | 3 |
3 | foo | two | w | 4 |
In [382]:
frame frame.reset_index(level=1) # 对于多重索引,可以指定重置哪一级索引,而不是全部重置
Out[382]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
c | d | |||
---|---|---|---|---|
c | a | b | ||
z | bar | one | z | 1 |
y | bar | two | y | 2 |
x | foo | one | x | 3 |
w | foo | two | w | 4 |
Out[382]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | c | d | ||
---|---|---|---|---|
c | b | |||
z | one | bar | z | 1 |
y | two | bar | y | 2 |
x | one | foo | x | 3 |
w | two | foo | w | 4 |
In [385]:
# reset_index方法可以使用drop参数,若其为true,则仅是把索引剔除,而不转换为df数据列 frame frame.reset_index(level=2, drop=True)
Out[385]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
c | d | |||
---|---|---|---|---|
c | a | b | ||
z | bar | one | z | 1 |
y | bar | two | y | 2 |
x | foo | one | x | 3 |
w | foo | two | w | 4 |
Out[385]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
c | d | ||
---|---|---|---|
c | a | ||
z | bar | z | 1 |
y | bar | y | 2 |
x | foo | x | 3 |
w | foo | w | 4 |
In [399]:
# Adding an ad hoc index # If you create an index yourself, you can just assign it to the index field # 创建index对象,并赋值给df index = pd.MultiIndex.from_product([range(2), [‘one‘, ‘two‘]], names=[‘first‘, ‘second‘]) index data data.index = index # 注意:index的长度要与df向适应 data
Out[399]:
MultiIndex(levels=[[0, 1], [‘one‘, ‘two‘]], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[‘first‘, ‘second‘])
Out[399]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | d | |
---|---|---|---|---|
0 | bar | one | z | 1 |
1 | bar | two | y | 2 |
2 | foo | one | x | 3 |
3 | foo | two | w | 4 |
Out[399]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | b | c | d | ||
---|---|---|---|---|---|
first | second | ||||
0 | one | bar | one | z | 1 |
two | bar | two | y | 2 | |
1 | one | foo | one | x | 3 |
two | foo | two | w | 4 |
In [ ]:
# Returning a view versus a copy 返回视图 对比 返回拷贝 # 避免链式操作,即多个连接的[],具体见前面的说明 # Why does assignment fail when using chained indexing? 为什么链式索引赋值失败 # python解释器,对以下赋值的区别 # 第一种:非链式赋值 dfmi.loc[:,(‘one‘,‘second‘)] = value # becomes, python解释为: dfmi.loc.__setitem__((slice(None), (‘one‘, ‘second‘)), value) # 直接set # Of course, dfmi.loc.__getitem__(idx) may be a view or a copy of dfmi. # 第二种:链式赋值 dfmi[‘one‘][‘second‘] = value # pd会抛出异常SettingWithCopy,链式操作具有不确定性! # becomes, python解释为: dfmi.__getitem__(‘one‘).__setitem__(‘second‘, value) # 先get,再set,前面的get返回的是一个copy
In [ ]:
# SettingWithCopy有时候会在没有明显的链式操作的情况下出现,例如: def do_something(df): foo = df[[‘bar‘, ‘baz‘]] # Is foo a view? A copy? Nobody knows! # ... many lines here ... foo[‘quux‘] = value # We don‘t know whether this will modify df or not! # “隐式”的链式操作 return foo
In [400]:
# Evaluation order matters 赋值命令事情 # 链式赋值操作引起的SettingWithCopyWarning,可以通过设置option mode取消或抑制。 dfb = pd.DataFrame({‘a‘ : [‘one‘, ‘one‘, ‘two‘,‘three‘, ‘two‘, ‘one‘, ‘six‘],‘c‘ : np.arange(7)}) dfb
Out[400]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | c | |
---|---|---|
0 | one | 0 |
1 | one | 1 |
2 | two | 2 |
3 | three | 3 |
4 | two | 4 |
5 | one | 5 |
6 | six | 6 |
In [401]:
# This will show the SettingWithCopyWarning # but the frame values will be set dfb[‘c‘][dfb.a.str.startswith(‘o‘)] = 42 dfb
d:\python\36-64\lib\site-packages\ipykernel_launcher.py:3: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy This is separate from the ipykernel package so we can avoid doing imports until
Out[401]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
a | c | |
---|---|---|
0 | one | 42 |
1 | one | 42 |
2 | two | 2 |
3 | three | 3 |
4 | two | 4 |
5 | one | 42 |
6 | six | 6 |
In [ ]:
# This however is operating on a copy and will not work. # 把option的提示级别由warn改为raise ???? pd.set_option(‘mode.chained_assignment‘,‘warn‘) # This however is operating on a copy and will not work. # ??
In [402]:
# A chained assignment can also crop up in setting in a mixed dtype frame. 出现在 # Note : These setting rules apply to all of .loc/.iloc # This is the correct access method 正确的存取方法 dfc = pd.DataFrame({‘A‘:[‘aaa‘,‘bbb‘,‘ccc‘],‘B‘:[1,2,3]}) dfc dfc.loc[0,‘A‘] = 11 dfc
Out[402]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | |
---|---|---|
0 | aaa | 1 |
1 | bbb | 2 |
2 | ccc | 3 |
Out[402]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | |
---|---|---|
0 | 11 | 1 |
1 | bbb | 2 |
2 | ccc | 3 |
In [403]:
dfc = dfc.copy() dfc dfc[‘A‘][0] = 111 # This can work at times, but is not guaranteed, and so should be avoided 有时可以工作,但不保证,应避免使用 dfc
Out[403]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | |
---|---|---|
0 | 11 | 1 |
1 | bbb | 2 |
2 | ccc | 3 |
d:\python\36-64\lib\site-packages\ipykernel_launcher.py:3: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy This is separate from the ipykernel package so we can avoid doing imports until
Out[403]:
.dataframe tbody tr th:only-of-type { vertical-align: middle }
.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }
A | B | |
---|---|---|
0 | 111 | 1 |
1 | bbb | 2 |
2 | ccc | 3 |
In [ ]:
pd.set_option(‘mode.chained_assignment‘, ‘raise‘) # 链式赋值将不会执行
In [ ]:
# http://pandas.pydata.org/pandas-docs/stable/indexing.html 全文完 # 2018-02-19
原文地址:https://www.cnblogs.com/shigubuhua/p/8454365.html