[bzoj2115] [洛谷P4151] [Wc2011] Xor

Description

Input

第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目。 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边。 图中可能有重边或自环。

Output

仅包含一个整数,表示最大的XOR和(十进制结果),注意输出后加换行回车。

Sample Input

5 7

1 2 2

1 3 2

2 4 1

2 5 1

4 5 3

5 3 4

4 3 2

Sample Output

6

HINT


想法

手动画画图后可以发现,最终对答案有贡献的边为一条从1到n的路径,及若干个环。

于是我们可以dfs一遍,找到所有的简单环及一条路径。

(为什么一条路径就可以呢?因为一条路径与某些 包括这路径上某些边的 环 异或起来,新的对答案有贡献的边会形成另一条路径。)

线性基维护每个简单环的异或和。

在已经选了的这个路径的异或和基础上,线性基中找出总异或和的max


代码

#include<cstdio>
#include<iostream>
#include<algorithm>

using namespace std;

typedef long long ll;
const int N = 50005;

struct node{
    int v;
    ll len;
    node *next;
}pool[N*4],*h[N];
int cnt;
void addedge(int u,int v,ll len){
    node *p=&pool[++cnt],*q=&pool[++cnt];
    p->v=v; p->next=h[u]; h[u]=p; p->len=len;
    q->v=u; q->next=h[v]; h[v]=q; q->len=len;
}

ll C[65];
void ins(ll x){
    if(!x) return;
    for(int i=63;i>=0;i--){
        if((x&(1ll<<i))==0) continue;
        if(!C[i]) { C[i]=x; return; }
        x^=C[i];
    }
}
ll cal(ll ret) {
    for(int i=63;i>=0;i--) ret=max(ret,ret^C[i]);
    return ret;
}

int vis[N];
ll d[N];
void dfs(int u){
    int v;
    vis[u]=1;
    for(node *p=h[u];p;p=p->next){
        v=p->v;
        if(!vis[v]){
            d[v]=d[u]^p->len;
            dfs(v);
        }
        else if(vis[v]==1)ins(d[u]^d[v]^p->len);
    }
    vis[u]=2;
}

int n,m;

int main()
{
    int u,v;
    ll len;
    scanf("%d%d",&n,&m);
    for(int i=0;i<m;i++){
        scanf("%d%d%lld",&u,&v,&len);
        addedge(u,v,len);
    }

    dfs(1);
    printf("%lld\n",cal(d[n])); /*注意是在d[u]的基础上使异或和最大*/

    return 0;
}

原文地址:https://www.cnblogs.com/lindalee/p/8590783.html

时间: 2024-10-09 11:09:36

[bzoj2115] [洛谷P4151] [Wc2011] Xor的相关文章

洛谷P2420 让我们异或吧

P2420 让我们异或吧 161通过 450提交 题目提供者该用户不存在 标签洛谷原创云端↑ 难度普及/提高- 时空限制1s / 128MB 提交  讨论  题解 最新讨论更多讨论 倍增可做的吧 玄学 更改根节点得分不一样- 这题面似乎对一些群体不太友- 这题为什么没数据 C++选手注意了 题目描述 异或是一种神奇的运算,大部分人把它总结成不进位加法. 在生活中-xor运算也很常见.比如,对于一个问题的回答,是为1,否为0.那么: (A是否是男生 )xor( B是否是男生)=A和B是否能够成为情

洛谷P2633 Count on a tree

题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始为0,即第一个询问的u是明文. 输入输出格式 输入格式: 第一行两个整数N,M. 第二行有N个整数,其中第i个整数表示点i的权值. 后面N-1行每行两个整数(x,y),表示点x到点y有一条边. 最后M行每行两个整数(u,v,k),表示一组询问. 输出格式: M行,表示每个询问的答案. 输入输出样例 输入样例#1:

洛谷 P2709 BZOJ 3781 小B的询问

题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重复次数.小B请你帮助他回答询问. 输入输出格式 输入格式: 第一行,三个整数N.M.K. 第二行,N个整数,表示小B的序列. 接下来的M行,每行两个整数L.R. 输出格式: M行,每行一个整数,其中第i行的整数表示第i个询问的答案. 输入输出样例 输入样例#1: 6 4 3 1 3 2 1 1 3

洛谷1231 教辅的组成

洛谷1231 教辅的组成 https://www.luogu.org/problem/show?pid=1231 题目背景 滚粗了的HansBug在收拾旧语文书,然而他发现了什么奇妙的东西. 题目描述 蒟蒻HansBug在一本语文书里面发现了一本答案,然而他却明明记得这书应该还包含一份练习题.然而出现在他眼前的书多得数不胜数,其中有书,有答案,有练习册.已知一个完整的书册均应该包含且仅包含一本书.一本练习册和一份答案,然而现在全都乱做了一团.许多书上面的字迹都已经模糊了,然而HansBug还是可

洛谷教主花园dp

洛谷-教主的花园-动态规划 题目描述 教主有着一个环形的花园,他想在花园周围均匀地种上n棵树,但是教主花园的土壤很特别,每个位置适合种的树都不一样,一些树可能会因为不适合这个位置的土壤而损失观赏价值. 教主最喜欢3种树,这3种树的高度分别为10,20,30.教主希望这一圈树种得有层次感,所以任何一个位置的树要比它相邻的两棵树的高度都高或者都低,并且在此条件下,教主想要你设计出一套方案,使得观赏价值之和最高. 输入输出格式 输入格式: 输入文件garden.in的第1行为一个正整数n,表示需要种的

洛谷 P2801 教主的魔法 题解

此文为博主原创题解,转载时请通知博主,并把原文链接放在正文醒目位置. 题目链接:https://www.luogu.org/problem/show?pid=2801 题目描述 教主最近学会了一种神奇的魔法,能够使人长高.于是他准备演示给XMYZ信息组每个英雄看.于是N个英雄们又一次聚集在了一起,这次他们排成了一列,被编号为1.2.…….N. 每个人的身高一开始都是不超过1000的正整数.教主的魔法每次可以把闭区间[L, R](1≤L≤R≤N)内的英雄的身高全部加上一个整数W.(虽然L=R时并不

洛谷P1466 集合 Subset Sums

洛谷P1466 集合 Subset Sums这题可以看成是背包问题 用空间为 1--n 的物品恰好填充总空间一半的空间 有几种方案 01 背包问题 1.注意因为两个交换一下算同一种方案,所以最终 要 f [ v ] / 2 2.要开 long long 1 #include <cstdio> 2 #include <cstdlib> 3 #include <cmath> 4 #include <cstring> 5 #include <string&g

洛谷P1160 队列安排 链表

洛谷P1160 队列安排   链表 1 #include <cstdio> 2 #include <cstring> 3 #include <cmath> 4 #include <cstdlib> 5 #include <string> 6 #include <algorithm> 7 #include <iomanip> 8 #include <iostream> 9 using namespace std

洛谷 P3367 并查集模板

#include<cstdio> using namespace std; int n,m,p; int father[2000001]; int find(int x) { if(father[x]!=x) father[x]=find(father[x]); return father[x]; } void unionn(int i,int j) { father[j]=i; } int main() { scanf("%d%d",&n,&m); for