方格取数问题 最小割

题目背景

none!

题目描述

在一个有 m*n 个方格的棋盘中,每个方格中有一个正整数。现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大。试设计一个满足要求的取数算法。对于给定的方格棋盘,按照取数要求编程找出总和最大的数。

输入输出格式

输入格式:

第 1 行有 2 个正整数 m 和 n,分别表示棋盘的行数和列数。接下来的 m 行,每行有 n 个正整数,表示棋盘方格中的数。

输出格式:

程序运行结束时,将取数的最大总和输出

输入输出样例

输入样例#1:
复制

3 3
1 2 3
3 2 3
2 3 1 

输出样例#1: 复制

11

说明

m,n<=100

总和sum- dinic();

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 100005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long  ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-5
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;

inline int rd() {
	int x = 0;
	char c = getchar();
	bool f = false;
	while (!isdigit(c)) {
		if (c == ‘-‘) f = true;
		c = getchar();
	}
	while (isdigit(c)) {
		x = (x << 1) + (x << 3) + (c ^ 48);
		c = getchar();
	}
	return f ? -x : x;
}

ll gcd(ll a, ll b) {
	return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; }

/*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
	if (!b) {
		x = 1; y = 0; return a;
	}
	ans = exgcd(b, a%b, x, y);
	ll t = x; x = y; y = t - a / b * y;
	return ans;
}
*/

int n, m;
int st, ed;
struct node {
	int u, v, nxt, w;
}edge[maxn << 1];

int head[maxn], cnt;

void addedge(int u, int v, int w) {
	edge[cnt].u = u; edge[cnt].v = v; edge[cnt].nxt = head[u];
	edge[cnt].w = w; head[u] = cnt++;
}

int rk[maxn];

int bfs() {
	queue<int>q;
	ms(rk);
	rk[st] = 1;
	q.push(st);
	while (!q.empty()) {
		int tmp = q.front(); q.pop();
		for (int i = head[tmp]; i != -1; i = edge[i].nxt) {
			int to = edge[i].v;
			if (rk[to] || edge[i].w <= 0)continue;
			rk[to] = rk[tmp] + 1; q.push(to);
		}
	}
	return rk[ed];
}

int dfs(int u, int flow) {
	if (u == ed)return flow;
	int add = 0;
	for (int i = head[u]; i != -1 && add < flow; i = edge[i].nxt) {
		int v = edge[i].v;
		if (rk[v] != rk[u] + 1 || !edge[i].w)continue;
		int tmpadd = dfs(v, min(edge[i].w, flow - add));
		if (!tmpadd) { rk[v] = -1; continue; }
		edge[i].w -= tmpadd; edge[i ^ 1].w += tmpadd;
		add += tmpadd;
	}
	return add;
}

int ans;
void dinic() {
	while (bfs())ans += dfs(st, inf);
}
//int n, m;
int a[200][200];
int dx[] = { 0,0,-1,1 };
int dy[] = { 1,-1,0,0 };
bool OK(int x, int y) {
	return x >= 1 && x <= n && y >= 1 && y <= m;
}
int getpos(int x, int y) {
	return (x - 1)*m + y;
}
int main()
{
	//	ios::sync_with_stdio(0);
	n = rd(); m = rd(); memset(head, -1, sizeof(head));
	int sum = 0;
	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= m; j++)a[i][j] = rd(), sum += a[i][j];
	}
	st = 0; ed = n * m + 4;
	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= m; j++) {
			if ((i + j) % 2)addedge(st, getpos(i, j), a[i][j]), addedge(getpos(i, j), st, a[i][j]);
			else addedge(getpos(i, j), ed, a[i][j]), addedge(ed, getpos(i, j), 0);
		}
	}
	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= m; j++) {
			if ((i + j) % 2) {
				for (int k = 0; k < 4; k++) {
					int nx = i + dx[k];
					int ny = j + dy[k];
					if (OK(nx, ny))addedge(getpos(i, j), getpos(nx, ny), inf), addedge(getpos(nx, ny), getpos(i, j), 0);
				}
			}
		}
	}
	//cout << 1 << endl;
	dinic();

	printf("%d\n", sum - ans);
	return 0;
}

原文地址:https://www.cnblogs.com/zxyqzy/p/10353555.html

时间: 2024-10-08 06:22:01

方格取数问题 最小割的相关文章

LuoguP2774 方格取数问题(最小割)

题目背景 none! 题目描述 在一个有 m*n 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大.试设计一个满足要求的取数算法.对于给定的方格棋盘,按照取数要求编程找出总和最大的数. 输入输出格式 输入格式: 第 1 行有 2 个正整数 m 和 n,分别表示棋盘的行数和列数.接下来的 m 行,每行有 n 个正整数,表示棋盘方格中的数. 输出格式: 程序运行结束时,将取数的最大总和输出 解题思路: 想个办法将选一个点和不选周围点关

【luogu 2774】方格取数 (最小割)

题目链接 [题目大意] 有n*m的方格,在其中取任意个格子的数,保证最终结果最大,取得数字不能相邻 [题目思路] 如果不是知道是网络流的题,大概会试下爆搜,取之后周围的不可取之类的,但是显而易见会T 然后考虑怎么用网络流做,为什么能用网络流做 我自己对于网络流的理解,是解决选择之间的直接冲突,从而得到最优解的方法,而这个题每一个数字选和不选之间就会发生冲突 [建图] 如何实现选择 拆点,这里大多数程序都是将点根据(i+j)分成两类,我觉得是为了代码更简洁些,如果把所有点都拆成两个的话还是可行的

HDU 1569 方格取数(2) (最小割)

题意:中文题. 析:很明显的是二分图的最大独立集,但是每个点都有权值,这个可以用最小割来求,建立一个超级源点s,和汇点t,然后s 向 X集,添加容量为权值的边,Y集向 t 添加容量为权值的,然后跑一遍最小割,然后用总权值减去就是答案了. 代码如下: #pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cst

hdoj 1569 方格取数(2) 【最小割】 【最大点权独立集】

方格取数(2) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 5589    Accepted Submission(s): 1741 Problem Description 给你一个m*n的格子的棋盘,每个格子里面有一个非负数. 从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取数所在的2个格子不能相邻,并且取出的

hdu 3657 最小割的活用 / 奇偶方格取数类经典题 /最小割

题意:方格取数,如果取了相邻的数,那么要付出一定代价.(代价为2*(X&Y))(开始用费用流,敲升级版3820,跪...) 建图:  对于相邻问题,经典方法:奇偶建立二分图.对于相邻两点连边2*(X&Y),源->X连边,Y->汇连边,权值w为点权. ans=总点权-最小割:如果割边是源->X,表示x不要选(是割边,必然价值在路径上最小),若割边是Y-汇点,同理:若割边是X->Y,则表示选Y点且选X点, 割为w( 2*(X&Y) ). 自己的确还没有理解其本质

二分图最小点权覆盖 二分图最大权独立集 方格取数 最小割

二分图最小点权覆盖: 每一条边 (u, v) 都是一个限制条件, 要求 u 和 v 不能同时取得. 我们考虑先取得所有的, 然后减去最小的点权. 建立原点 S , 连向二分图左边的所有点, 与 S 连通的意义是左边的点被选择了, 或者右边的点没有被选择. 建立汇点 T , 二分图右边的所有点连向它, 与 T 连通的意义是左边的点没有被选择, 或者右边的点被选择了. 利用最小割最大流定理, 我们跑最大流, 再根据最后一次 BFS 得出的情报构造方案. 定理 覆盖集与独立集互补. 证明 即证明覆盖集

734. [网络流24题] 方格取数问题 二分图点权最大独立集/最小割/最大流

?问题描述:在一个有m*n 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意2 个数所在方格没有公共边,且取出的数的总和最大.试设计一个满足要求的取数算法.?编程任务:对于给定的方格棋盘,按照取数要求编程找出总和最大的数.?数据输入:由文件grid.in提供输入数据.文件第1 行有2 个正整数m和n,分别表示棋盘的行数和列数.接下来的m行,每行有n个正整数,表示棋盘方格中的数. [问题分析] 二分图点权最大独立集,转化为最小割模型,从而用最大流解决. [建模方法] 首先把棋盘黑白

LiberOJ #6007. 「网络流 24 题」方格取数 最小割 最大点权独立集 最大流

#6007. 「网络流 24 题」方格取数 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 在一个有 m×n m \times nm×n 个方格的棋盘中,每个方格中有一个正整数. 现要从方格中取数,使任意 2 22 个数所在方格没有公共边,且取出的数的总和最大.试设计一个满足要求的取数算法. 输入格式 文件第 1 11 行有 2 22 个正整数 m mm 和 n nn,分别表示棋盘的行数和列数

HDU 1569 方格取数(2)(最小割)

方格取数(2) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 5256    Accepted Submission(s): 1652 Problem Description 给你一个m*n的格子的棋盘,每个格子里面有一个非负数. 从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取数所在的2个格子不能相邻,并且取出的