题目背景
none!
题目描述
在一个有 m*n 个方格的棋盘中,每个方格中有一个正整数。现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大。试设计一个满足要求的取数算法。对于给定的方格棋盘,按照取数要求编程找出总和最大的数。
输入输出格式
输入格式:
第 1 行有 2 个正整数 m 和 n,分别表示棋盘的行数和列数。接下来的 m 行,每行有 n 个正整数,表示棋盘方格中的数。
输出格式:
程序运行结束时,将取数的最大总和输出
输入输出样例
输入样例#1:
复制
3 3 1 2 3 3 2 3 2 3 1
输出样例#1: 复制
11
说明
m,n<=100
总和sum- dinic();
#include<iostream> #include<cstdio> #include<algorithm> #include<cstdlib> #include<cstring> #include<string> #include<cmath> #include<map> #include<set> #include<vector> #include<queue> #include<bitset> #include<ctime> #include<deque> #include<stack> #include<functional> #include<sstream> //#include<cctype> //#pragma GCC optimize(2) using namespace std; #define maxn 100005 #define inf 0x7fffffff //#define INF 1e18 #define rdint(x) scanf("%d",&x) #define rdllt(x) scanf("%lld",&x) #define rdult(x) scanf("%lu",&x) #define rdlf(x) scanf("%lf",&x) #define rdstr(x) scanf("%s",x) typedef long long ll; typedef unsigned long long ull; typedef unsigned int U; #define ms(x) memset((x),0,sizeof(x)) const long long int mod = 1e9; #define Mod 1000000000 #define sq(x) (x)*(x) #define eps 1e-5 typedef pair<int, int> pii; #define pi acos(-1.0) //const int N = 1005; #define REP(i,n) for(int i=0;i<(n);i++) typedef pair<int, int> pii; inline int rd() { int x = 0; char c = getchar(); bool f = false; while (!isdigit(c)) { if (c == ‘-‘) f = true; c = getchar(); } while (isdigit(c)) { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f ? -x : x; } ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a%b); } int sqr(int x) { return x * x; } /*ll ans; ll exgcd(ll a, ll b, ll &x, ll &y) { if (!b) { x = 1; y = 0; return a; } ans = exgcd(b, a%b, x, y); ll t = x; x = y; y = t - a / b * y; return ans; } */ int n, m; int st, ed; struct node { int u, v, nxt, w; }edge[maxn << 1]; int head[maxn], cnt; void addedge(int u, int v, int w) { edge[cnt].u = u; edge[cnt].v = v; edge[cnt].nxt = head[u]; edge[cnt].w = w; head[u] = cnt++; } int rk[maxn]; int bfs() { queue<int>q; ms(rk); rk[st] = 1; q.push(st); while (!q.empty()) { int tmp = q.front(); q.pop(); for (int i = head[tmp]; i != -1; i = edge[i].nxt) { int to = edge[i].v; if (rk[to] || edge[i].w <= 0)continue; rk[to] = rk[tmp] + 1; q.push(to); } } return rk[ed]; } int dfs(int u, int flow) { if (u == ed)return flow; int add = 0; for (int i = head[u]; i != -1 && add < flow; i = edge[i].nxt) { int v = edge[i].v; if (rk[v] != rk[u] + 1 || !edge[i].w)continue; int tmpadd = dfs(v, min(edge[i].w, flow - add)); if (!tmpadd) { rk[v] = -1; continue; } edge[i].w -= tmpadd; edge[i ^ 1].w += tmpadd; add += tmpadd; } return add; } int ans; void dinic() { while (bfs())ans += dfs(st, inf); } //int n, m; int a[200][200]; int dx[] = { 0,0,-1,1 }; int dy[] = { 1,-1,0,0 }; bool OK(int x, int y) { return x >= 1 && x <= n && y >= 1 && y <= m; } int getpos(int x, int y) { return (x - 1)*m + y; } int main() { // ios::sync_with_stdio(0); n = rd(); m = rd(); memset(head, -1, sizeof(head)); int sum = 0; for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++)a[i][j] = rd(), sum += a[i][j]; } st = 0; ed = n * m + 4; for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++) { if ((i + j) % 2)addedge(st, getpos(i, j), a[i][j]), addedge(getpos(i, j), st, a[i][j]); else addedge(getpos(i, j), ed, a[i][j]), addedge(ed, getpos(i, j), 0); } } for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++) { if ((i + j) % 2) { for (int k = 0; k < 4; k++) { int nx = i + dx[k]; int ny = j + dy[k]; if (OK(nx, ny))addedge(getpos(i, j), getpos(nx, ny), inf), addedge(getpos(nx, ny), getpos(i, j), 0); } } } } //cout << 1 << endl; dinic(); printf("%d\n", sum - ans); return 0; }
原文地址:https://www.cnblogs.com/zxyqzy/p/10353555.html
时间: 2024-10-08 06:22:01