大数据学习——hive基本操作

1 建表

create table student(id int,name string ,age int) row format delimitedfields terminated by ‘,‘;

2 创建一个student.txt

添加数据

1,zhangsan,10
2,lisi,20
3,wnagwu,25

3 上传

hdfs dfs -put student.txt /user/hive/warehouse/student

4 select * from student;

5 通常不会通过put方式加载数据,而是通过load的方式添加数据

create table t_user(id int,name string ,age int)
row format delimited
fields terminated by ‘,‘;

load data local inpath ‘/root/student.txt‘ into table t_user;

6 添加hdfs上的数据到hive

hdfs dfs -put student1.txt /

7 内部表和外部表的区别

EXTERNAL关键字可以让用户创建一个外部表,在建表的同时指定一个指向实际数据的路径(LOCATION),Hive 创建内部表时,会将数据移动到数据仓库指向的路径;若创建外部表,仅记录数据所在的路径,不对数据的位置做任何改变。在删除表的时候,内部表的元数据和数据会被一起删除,而外部表只删除元数据,不删除数据。

原文地址:https://www.cnblogs.com/feifeicui/p/10274428.html

时间: 2024-11-08 17:02:14

大数据学习——hive基本操作的相关文章

大数据学习——hive安装部署

1上传压缩包 2 解压 tar -zxvf apache-hive-1.2.1-bin.tar.gz -C apps 3 重命名 mv apache-hive-1.2.1-bin hive 4 设置环境变量 vi /etc/profile expert HIVE_HOME=/root/apps/hiveexport PATH=$PATH:$HIVE_HOME/bin 5 启动hive cd apps/hive bin/hive 出现上面的问题是因为版本不兼容 解决一下版本不兼容问题:替换 app

【大数据学习--hive】hive中执行select * from tablename 报错问题。

在虚拟机中搭建hive之后,创建了表,在执行select * from tablename的时候报错,具体报错信息如下: hive> select * from hive_01; FAILED: SemanticException Unable to determine if hdfs://master:9000/user/hive/warehouse/hive_1.db/hive_01 is encrypted: java.lang.IllegalArgumentException: java

大数据学习系列之四 ----- Hadoop+Hive环境搭建图文详解(单机)

引言 在大数据学习系列之一 ----- Hadoop环境搭建(单机) 成功的搭建了Hadoop的环境,在大数据学习系列之二 ----- HBase环境搭建(单机)成功搭建了HBase的环境以及相关使用介绍.本文主要讲解如何搭建Hadoop+Hive的环境. 一.环境准备 1,服务器选择 本地虚拟机 操作系统:linux CentOS 7 Cpu:2核 内存:2G 硬盘:40G 说明:因为使用阿里云服务器每次都要重新配置,而且还要考虑网络传输问题,于是自己在本地便搭建了一个虚拟机,方便文件的传输以

大数据学习系列之五 ----- Hive整合HBase图文详解

引言 在上一篇 大数据学习系列之四 ----- Hadoop+Hive环境搭建图文详解(单机) 和之前的大数据学习系列之二 ----- HBase环境搭建(单机) 中成功搭建了Hive和HBase的环境,并进行了相应的测试.本文主要讲的是如何将Hive和HBase进行整合. Hive和HBase的通信意图 Hive与HBase整合的实现是利用两者本身对外的API接口互相通信来完成的,其具体工作交由Hive的lib目录中的hive-hbase-handler-*.jar工具类来实现,通信原理如下图

大数据学习系列之七 ----- Hadoop+Spark+Zookeeper+HBase+Hive集群搭建 图文详解

引言 在之前的大数据学习系列中,搭建了Hadoop+Spark+HBase+Hive 环境以及一些测试.其实要说的话,我开始学习大数据的时候,搭建的就是集群,并不是单机模式和伪分布式.至于为什么先写单机的搭建,是因为作为个人学习的话,单机已足以,好吧,说实话是自己的电脑不行,使用虚拟机实在太卡了... 整个的集群搭建是在公司的测试服务搭建的,在搭建的时候遇到各种各样的坑,当然也收获颇多.在成功搭建大数据集群之后,零零散散的做了写笔记,然后重新将这些笔记整理了下来.于是就有了本篇博文. 其实我在搭

大数据学习系列之七 ----- Hadoop+Spark+Zookeeper+HBase+Hive集

引言 在之前的大数据学习系列中,搭建了Hadoop+Spark+HBase+Hive 环境以及一些测试.其实要说的话,我开始学习大数据的时候,搭建的就是集群,并不是单机模式和伪分布式.至于为什么先写单机的搭建,是因为作为个人学习的话,单机已足以,好吧,说实话是自己的电脑不行,使用虚拟机实在太卡了... 整个的集群搭建是在公司的测试服务搭建的,在搭建的时候遇到各种各样的坑,当然也收获颇多.在成功搭建大数据集群之后,零零散散的做了写笔记,然后重新将这些笔记整理了下来.于是就有了本篇博文. 其实我在搭

好程序员大数据学习路线之hive存储格式

好程序员大数据学习路线之hive存储格式,hive的存储格式通常是三种:textfile . sequencefile . rcfile . orc .自定义 set hive.default.fileformat=TextFile; 默认存储格式为:textfile textFile:普通文本存储,不进行压缩.查询效率较低.1.sequencefile:hive提供的二进制序列文件存储,天生压缩.sequeceFile 和 rcfile都不允许使用load方式加载数据.需要使用insert 方

好程序员大数据学习路线之hive表的查询

好程序员大数据学习路线之hive表的查询 1.join 查询 1.永远是小结果集驱动大结果集(小表驱动大表,小表放在左表). 2.尽量不要使用join,但是join是难以避免的. left join . left outer join . left semi join(左半开连接,只显示左表信息) hive在0.8版本以后开始支持left join left join 和 left outer join 效果差不多 hive的join中的on只能跟等值连接 "=",不能跟< &g

好程序员大数据学习路线分享hive的运行方式

好程序员大数据学习路线分享hive的运行方式,hive的属性设置: 1.在cli端设置 (只针对当前的session) 3.在java代码中设置 (当前连接) 2.在配置文件中设置 (所有session有效) 设置属性的优先级依次降低. cli端只能设置非hive启动需要的属性.(log属性,元数据连接属性) 查找所有属性: hive>set; 查看当前属性的值:通常是hadoop hive> set -v; 模糊查找属性: hive -S -e "set" | grep