import tensorflow as tf files = tf.train.match_filenames_once("E:\\MNIST_data\\output.tfrecords") filename_queue = tf.train.string_input_producer(files, shuffle=False) # 读取文件。 reader = tf.TFRecordReader() _,serialized_example = reader.read(filename_queue) # 解析读取的样例。 features = tf.parse_single_example( serialized_example, features={ ‘image_raw‘:tf.FixedLenFeature([],tf.string), ‘pixels‘:tf.FixedLenFeature([],tf.int64), ‘label‘:tf.FixedLenFeature([],tf.int64) }) decoded_images = tf.decode_raw(features[‘image_raw‘],tf.uint8) retyped_images = tf.cast(decoded_images, tf.float32) labels = tf.cast(features[‘label‘],tf.int32) #pixels = tf.cast(features[‘pixels‘],tf.int32) images = tf.reshape(retyped_images, [784]) min_after_dequeue = 10000 batch_size = 100 capacity = min_after_dequeue + 3 * batch_size image_batch, label_batch = tf.train.shuffle_batch([images, labels], batch_size=batch_size, capacity=capacity, min_after_dequeue=min_after_dequeue) def inference(input_tensor, weights1, biases1, weights2, biases2): layer1 = tf.nn.relu(tf.matmul(input_tensor, weights1) + biases1) return tf.matmul(layer1, weights2) + biases2 # 模型相关的参数 INPUT_NODE = 784 OUTPUT_NODE = 10 LAYER1_NODE = 500 REGULARAZTION_RATE = 0.0001 TRAINING_STEPS = 5000 weights1 = tf.Variable(tf.truncated_normal([INPUT_NODE, LAYER1_NODE], stddev=0.1)) biases1 = tf.Variable(tf.constant(0.1, shape=[LAYER1_NODE])) weights2 = tf.Variable(tf.truncated_normal([LAYER1_NODE, OUTPUT_NODE], stddev=0.1)) biases2 = tf.Variable(tf.constant(0.1, shape=[OUTPUT_NODE])) y = inference(image_batch, weights1, biases1, weights2, biases2) # 计算交叉熵及其平均值 cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=label_batch) cross_entropy_mean = tf.reduce_mean(cross_entropy) # 损失函数的计算 regularizer = tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE) regularaztion = regularizer(weights1) + regularizer(weights2) loss = cross_entropy_mean + regularaztion # 优化损失函数 train_step = tf.train.GradientDescentOptimizer(0.01).minimize(loss) # 初始化会话,并开始训练过程。 with tf.Session() as sess: # tf.global_variables_initializer().run() sess.run((tf.global_variables_initializer(),tf.local_variables_initializer())) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) # 循环的训练神经网络。 for i in range(TRAINING_STEPS): if i % 1000 == 0: print("After %d training step(s), loss is %g " % (i, sess.run(loss))) sess.run(train_step) coord.request_stop() coord.join(threads)
原文地址:https://www.cnblogs.com/tszr/p/10885394.html
时间: 2024-11-06 03:35:04