莫烦Python之机器学习概念了解

1、机器学习分类

  • 有监督学习
  • 无监督学习
  • 半监督学习
  • 强化学习
  • 遗传算法

2、神经网络

  • 一种基于传统统计学的模型,由大量的神经元与其关系构成。常用来对复杂的输入和输出关系进行建模
  • 误差反向传递:给出信号,得到经过神经网络算法之后的结果(信号正向传播),再根据结果来修改神经网络中的神经元强度(信号反向传播)
  • 通过正向和反向传播来更新神经元,从而形成更好的神经系统
  • 每一个神经元都有属于它的激活函数,在训练过程中可以通过调整不同神经元的激活参数来调整模型
  • 输入层:负责信息的传入

    输出层:权衡、中转、输出信息

    隐藏层:负责传入信息的加工处理

  • ?????但是最重要的还是不知道啊,比如输入层的信息具体怎么处理,隐藏层怎么加工,输出层又是怎么回事????具体是怎么实现完全不知啊

3、卷积神经网络(CNN)

  • 应用:图片识别、视频分析、自然语言处理
  • 数据输入层,卷积计算层,RELU激励层,池化层,全连接层(从这个博客看来的)
  • 有一个批量过滤器,持续在图片上滚动搜集图片信息,每次只是一小块信息,整理后得到边缘信息;然后批量过滤器扫过边缘的信息,神经网络总结出更高层的信息;再一次过滤后总结出脸部信息;再把这些信息放入普通的全连接神经网络进行分类
  • 问题依旧是具体实现,怎么搜集信息,怎么整理,上面的那个博客讲的很详细。

4、循环神经网络(RNN)

  • 应用:语言分析,序列化数据的处理
  • 为了让神经网络在有序数据集中学习,产生对当前发生事情的意义,也就是产生“上文联系”
  • x1数据下产生状态s1以及结果y1,在x2数据下产生状态s2,结果y2由状态s1和s2共同创造

5、LSTM RNN

  • LSTM:long short memery,长短期记忆
  • 为了解决普通RNN的弊端(在误差反向传递的时候,每循环一次都会乘以当前状态的权重w,如果w>1,那么返回的误差就会很大,可能会发生梯度爆炸;而w<1,返回的误差就会很小,可能发生梯度消失)
  • 普通RNN没有办法回忆起久远记忆(刚开始数据集产生的记忆)
  • 与普通RNN的区别,增加了输入、输出、忘记,有主线记忆单元,当后面的数据与前面冲突时,按比例更改“主线内容”;如果与“主线”数据相关,则添加进“主线”

原文地址:https://www.cnblogs.com/HJhj/p/10854390.html

时间: 2024-10-19 22:32:21

莫烦Python之机器学习概念了解的相关文章

莫烦python的视频源

莫烦python是一个关于python.机器学习教程的网址,站长很多东西是通过自学而来的,所以他创建了youtube和优酷频道. 网址 https://morvanzhou.github.io/ 项目地址 https://github.com/MorvanZhou/morvanzhou.github.io 在项目中有2个分支,master分支是github page,而hexo分支是源代码.在代码中,可以看到一些markdown文件的front matter 有 youku_id 和 youtu

稍稍乱入的CNN,本文依然是学习周莫烦视频的笔记。

稍稍乱入的CNN,本文依然是学习周莫烦视频的笔记. 还有 google 在 udacity 上的 CNN 教程. CNN(Convolutional Neural Networks) 卷积神经网络简单讲就是把一个图片的数据传递给CNN,原涂层是由RGB组成,然后CNN把它的厚度加厚,长宽变小,每做一层都这样被拉长,最后形成一个分类器: 如果想要分成十类的话,那么就会有0到9这十个位置,这个数据属于哪一类就在哪个位置上是1,而在其它位置上为零. 在 RGB 这个层,每一次把一块核心抽出来,然后厚度

用Python开始机器学习(2:决策树分类算法)

http://blog.csdn.net/lsldd/article/details/41223147 从这一章开始进入正式的算法学习. 首先我们学习经典而有效的分类算法:决策树分类算法. 1.决策树算法 决策树用树形结构对样本的属性进行分类,是最直观的分类算法,而且也可以用于回归.不过对于一些特殊的逻辑分类会有困难.典型的如异或(XOR)逻辑,决策树并不擅长解决此类问题. 决策树的构建不是唯一的,遗憾的是最优决策树的构建属于NP问题.因此如何构建一棵好的决策树是研究的重点. J. Ross Q

机器学习00:如何通过Python入门机器学习

我们都知道机器学习是一门综合性极强的研究课题,对数学知识要求很高.因此,对于非学术研究专业的程序员,如果希望能入门机器学习,最好的方向还是从实践触发. 我了解到Python的生态对入门机器学习很有帮助.因此希望以此作为突破口入门机器学习. 我将会记录一个系列的学习与实践记录.记录内容主要参考Youtube中sentdex发布的视频,有兴趣的读者可以自己FQ到油管看一下. 下面介绍一下我将如何通过Python入门机器学习. 学习Python基本语法 首先我在Python官网找到入门教程,快速过了一

Python相关机器学习‘武器库’

开始学习Python,之后渐渐成为我学习工作中的第一辅助脚本语言,虽然开发语言是Java,但平时的很多文本数据处理任务都交给了Python.这些年来,接触和使用了很多Python工具包,特别是在文本处理,科学计算,机器学习和数据挖掘领域,有很多很多优秀的Python工具包可供使用,所以作为Pythoner,也是相当幸福的.如果仔细留意微博和论坛,你会发现很多这方面的分享,自己也Google了一下,发现也有同学总结了"Python机器学习库",不过总感觉缺少点什么.最近流行一个词,全栈工

从Python开始机器学习

目前机器学习红遍全球.男女老少都在学机器学习模型,分类器,神经网络和吴恩达.你也想成为一份子,但你该如何开始? 在这篇文章中我们会讲Python的重要特征和它适用于机器学习的原因,介绍一些重要的机器学习包,以及其他你可以获取更详细资源的地方. 加qq群813622576免费领取学习资料 为什么用Python做机器学习 Python很适合用于机器学习.首先,它很简单.如果你完全不熟悉Python但是有一些其他的编程经验(C或者其他编程语言),要上手是很快的.其次,Python的社区很强大.这使得P

python入门机器学习,3行代码搞定线性回归

本文着重是重新梳理一下线性回归的概念,至于几行代码实现,那个不重要,概念明确了,代码自然水到渠成. "机器学习"对于普通大众来说可能会比较陌生,但是"人工智能"这个词简直是太火了,即便是风云变化的股市中,只要是与人工智能.大数据.云计算相关的概念股票都会有很好的表现.机器学习是实现人工智能的基础,今天早上看了美国著名演员威尔斯密斯和世界最顶级的机器人进行对话的视频,视频中的机器人不论从语言还是表情都表达的非常到位,深感人工智能真的离我们越来越近了,所以学习人工智能前

tensorflow 莫烦教程

1,感谢莫烦 2,第一个实例:用tf拟合线性函数 import tensorflow as tf import numpy as np # create data x_data = np.random.rand(100).astype(np.float32) y_data = x_data*0.1 + 0.3 #先创建我们的线性函数目标 #搭建模型 Weights = tf.Variable(tf.random_uniform([1], -1.0, 1.0)) biases = tf.Varia

用Python开始机器学习(7:逻辑回归分类) --好!!

from : http://blog.csdn.net/lsldd/article/details/41551797 在本系列文章中提到过用Python开始机器学习(3:数据拟合与广义线性回归)中提到过回归算法来进行数值预测.逻辑回归算法本质还是回归,只是其引入了逻辑函数来帮助其分类.实践发现,逻辑回归在文本分类领域表现的也很优秀.现在让我们来一探究竟. 1.逻辑函数 假设数据集有n个独立的特征,x1到xn为样本的n个特征.常规的回归算法的目标是拟合出一个多项式函数,使得预测值与真实值的误差最小