softmax函数

#include <vector>
#include <cmath> //math.h
std::vector<double> vsoftmax(std::vector<double> &v) {
    double sum=0;
    for(auto iter:v) {
        sum+=exp(iter);
    }

    std::vector<double> res;
    for(int i=0;i<v.size();i++) {
        res.push_back(exp(v[i])/sum);
    }

    return res;
}

原文地址:https://www.cnblogs.com/smallredness/p/10749130.html

时间: 2024-10-22 06:43:34

softmax函数的相关文章

softmax函数python实现

import numpy as np def softmax(x): """ 对输入x的每一行计算softmax. 该函数对于输入是向量(将向量视为单独的行)或者矩阵(M x N)均适用. 代码利用softmax函数的性质: softmax(x) = softmax(x + c) 参数: x -- 一个N维向量,或者M x N维numpy矩阵. 返回值: x -- 在函数内部处理后的x """ orig_shape = x.shape # 根据输

Softmax函数与交叉熵

在Logistic regression二分类问题中,我们可以使用sigmoid函数将输入Wx+b映射到(0,1)区间中,从而得到属于某个类别的概率.将这个问题进行泛化,推广到多分类问题中,我们可以使用softmax函数,对输出的值归一化为概率值 这里假设在进入softmax函数之前,已经有模型输出C值,其中C是要预测的类别数,模型可以是全连接网络的输出aa,其输出个数为C,即输出为: 所以对每个样本,它属于类别i的概率为: 通过上式可以保证 ,即属于各个类别的概率和为1 对softmax函数进

Sigmoid函数与Softmax函数的理解

1. Sigmod 函数 1.1 函数性质以及优点 其实logistic函数也就是经常说的sigmoid函数,它的几何形状也就是一条sigmoid曲线(S型曲线). 其中z是一个线性组合,比如z可以等于:b + w1*x1 + w2*x2.通过代入很大的正数或很小的负数到g(z)函数中可知,其结果趋近于0或1 A logistic function or logistic curve is a common “S” shape (sigmoid curve). 也就是说,sigmoid函数的功能

logistic函数和softmax函数

  简单总结一下机器学习最常见的两个函数,一个是logistic函数,另一个是softmax函数,若有不足之处,希望大家可以帮忙指正.本文首先分别介绍logistic函数和softmax函数的定义和应用,然后针对两者的联系和区别进行了总结. 1. logistic函数 1.1 logistic函数定义 引用wiki百科的定义: A logistic function or logistic curve is a common "S" shape (sigmoid curve). 其实逻

深入理解softmax函数

Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签  可以取两个以上的值.Softmax模型可以用来给不同的对象分配概率.即使在之后,我们训练更加精细的模型时,最后一步也需要用softmax来分配概率.本质上其实是一种多种类型的线性分割,当类标签  取 2 时,就相当于是logistic回归模型. 在 softmax回归中,我们解决的是多分类问题(相对于 logistic 回归解决的二分类问题),类标  可以取  个不同的值(而不是 2 个).因

Softmax函数从零开始实现——2020.2.22

?????先导?本节实现所需的包或模块. import torch import torchvision import numpy as np import sys sys.path.append("..") # 为了导?上层?录的d2lzh_pytorch import d2lzh_pytorch as d2l 1.获取数据集 ????使?Fashion-MNIST数据集,并设置批量??为256. batch_size = 256 train_iter, test_iter = d2

Softmax与Sigmoid函数的联系

译自:http://willwolf.io/2017/04/19/deriving-the-softmax-from-first-principles/ 本文的原始目标是探索softmax函数与sigmoid函数的关系.事实上,两者的关系看起来已经是遥不可及:一个是分子中有指数!一个有求和!一个分母中有1!.当然,最重要的是两个的名称不一样. 推导一下,很快就可以意识到,两者的关系可以回溯到更为泛化的条件慨率原理的建模框架(back out into a more general modelin

对于分类问题的神经网络最后一层的函数:sigmoid、softmax与损失函数

对于分类问题的神经网络最后一层的函数做如下知识点总结: sigmoid和softmax一般用作神经网络的最后一层做分类函数(备注:sigmoid也用作中间层做激活函数): 对于类别数量大于2的分类问题,如果每个类别之间互斥,则选用softmax函数(例如:类别为牡丹花.玫瑰花.菊花),如果每个类别之间有交叉则选用与类别数量相等的sigmoid函数(例如:类别为小孩.大人.男人.女人,此处应该选用4个sigmoid函数): 神经网络最后一层的分类函数直接面临作损失函数的选择: softmax函数的

转载:sigmoid和softmax总结

转自:http://blog.csdn.net/u014422406/article/details/52805924 sigmoid函数(也叫逻辑斯谛函数): 引用wiki百科的定义: A logistic function or logistic curve is a common "S" shape (sigmoid curve). 其实逻辑斯谛函数也就是经常说的sigmoid函数,它的几何形状也就是一条sigmoid曲线. logistic曲线如下: 同样,我们贴一下wiki百