第一眼看这道题目的时候觉得可能会很难也看不太懂,但是看了给出的Hint之后思路就十分清晰了
Consider the first sample. Overall, the first sample has 3 queries. The first query l = 2, r = 11 comes. You need to count f(2) + f(3) + f(5) + f(7) + f(11) = 2 + 1 + 4 + 2 + 0 = 9. The second query comes l = 3, r = 12. You need to count f(3) + f(5) + f(7) + f(11) = 1 + 4 + 2 + 0 = 7. The third query comes l = 4, r = 4. As this interval has no prime numbers, then the sum equals 0.
xn的范围在(2 ≤ xi ≤ 107),而 l, r 的范围在 (2 ≤ li ≤ ri ≤ 2·109) ,易得在计算的时候是不会考虑107 以后了
首先写一个素数快速打表,同时也统计一下在 l, r 范围内每个数满足题目条件的总数 (虽然觉得这样的打表方法的确很慢)
然后注意了,因为查询的次数很多,多达5*104次 ,所以在统计的时候可以算出累计和以节省时间
Source Code:
//#pragma comment(linker, "/STACK:16777216") //for c++ Compiler #include <stdio.h> #include <iostream> #include <fstream> #include <cstring> #include <cmath> #include <stack> #include <string> #include <map> #include <set> #include <list> #include <queue> #include <vector> #include <algorithm> #define Max(a,b) (((a) > (b)) ? (a) : (b)) #define Min(a,b) (((a) < (b)) ? (a) : (b)) #define Abs(x) (((x) > 0) ? (x) : (-(x))) #define MOD 1000000007 #define pi acos(-1.0) using namespace std; typedef long long ll ; typedef unsigned long long ull ; typedef unsigned int uint ; typedef unsigned char uchar ; template<class T> inline void checkmin(T &a,T b){if(a>b) a=b;} template<class T> inline void checkmax(T &a,T b){if(a<b) a=b;} const double eps = 1e-7 ; const int N = 210 ; const int M = 1100011*2 ; const ll P = 10000000097ll ; const int MAXN = 10900000 ; int cnt[MAXN],a[MAXN]; bool check[MAXN]; void init_prime(){ for(int i = 2; i < MAXN; ++i){ //素数打表 if(!check[i]){ for(int j = i; j < MAXN; j += i){ check[j] = true; cnt[i] += a[j]; } } } } int main(){ std::ios::sync_with_stdio(false); int i, j, t, k, u, v, numCase = 0; int n, q, x, y; cin >> n; for(i = 1; i <= n; ++i){ cin >> x; ++a[x]; } init_prime(); for(i = 2; i < MAXN; ++i){ cnt[i] += cnt[i - 1]; //作累计和以节省查询时间 } cin >> t; while(t--){ cin >> x >> y; checkmin(x, 10000000); checkmin(y, 10000000); cout << cnt[y] - cnt[x - 1] << endl; } return 0; }
时间: 2024-12-21 02:32:47