关于ADM和高维空间下距离度量的问题

最近聆听了两个IEEE FELLOW的高论。周末北大林老师来学校做了个报告,讲了很多新的机器学习概念。但是本人更关注的低秩学习,林老师只字未提。虽然如此,林老师的论文最近还是深入研究了很多,有多少改进的空间先不说,一篇LADMAP就需要看好几篇论文甚至回溯到十几年前的一些论文。或者说,当目标函数中有多个要求的变量的时候,一般采用ADM方法。但是一般会选用ADM的改进方法,比如11年林老师的ALADMAP方法。然而光看这篇也不能看懂,因为算法中又使用了林老师10年的一篇论文的方法,简单说就是一个低秩学习的约束条件。不过这个约束条件,也许大牛们觉得不屑于用文字在论文里解释两行吧。。

总之,低秩似乎还是在说降维的事。那么降维是为了加快计算是显而易见的,还有没有其他原因呢。

d为特征空间的维度,当其趋于无穷大时,距离测量开始失去其在高维空间中测量不相似性的有效性。这样,就需要寻找合适的度量,或者降维。

另一个问题就是惩罚项的问题。正好遇到北辰新聘的墨尔本的客座IEEE FELLOW,于是专门问了一下这个事。加惩罚项没关系,关键是损失函数和惩罚项要匹配,或者说这样凑成的目标函数之前有标准的被证明是凸的问题。再就是神经网络中如果增加惩罚项,也要考虑看相应的论文再采用能用的惩罚项策略。

原文地址:https://www.cnblogs.com/ubiwind/p/12048358.html

时间: 2024-10-07 11:30:33

关于ADM和高维空间下距离度量的问题的相关文章

概率分布之间的距离度量以及python实现

1. 欧氏距离(Euclidean Distance)       欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式.(1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧氏距离:(2)三维空间两点a(x1,y1,z1)与b(x2,y2,z2)间的欧氏距离:(3)两个n维向量a(x11,x12,-,x1n)与 b(x21,x22,-,x2n)间的欧氏距离:(4)也可以用表示成向量运算的形式: python中的实现: 方法一: import numpy as np x=

从K近邻算法、距离度量谈到KD树、SIFT+BBF算法

从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经网络:3.编程艺术第28章.你看到,blog内的文章与你于别处所见的任何都不同.于是,等啊等,等一台电脑,只好等待..”.得益于田,借了我一台电脑(借他电脑的时候,我连表示感谢,他说“能找到工作全靠你的博客,这点儿小忙还说,不地道”,有的时候,稍许感受到受人信任也是一种压力,愿我不辜负大家对我的信任)

概率分布之间的距离度量以及python实现(四)

1.f 散度(f-divergence) KL-divergence 的坏处在于它是无界的.事实上KL-divergence 属于更广泛的 f-divergence 中的一种. 如果P和Q被定义成空间中的两个概率分布,则f散度被定义为: 一些通用的散度,如KL-divergence, Hellinger distance, 和total variation distance,都是f散度的一种特例.只是f函数的取值不同而也. 在python中的实现 : import numpy as np imp

距离度量学习

为什么学习距离度量? 在机器学习中,对高维数据进行降维的主要目的是希望找到一个合适的低维空间,在此空间中进行学习能比原始空间性能更好.事实上,每个空间对应了在样本属性上定义的一个距离度量,而寻找合适的空间,实质上就是在寻找一个合适的距离度量.那么,为何不直接尝试" 学习" 出一个合适的距离度量呢?这就是度量学习(metric learning)的基本动机. 扩展 度量学习的目的是在样本上学习距离度量函数. 距离度量函数必须服从4个公理非负性,对称性,次可加性及不可分与同一性.在实践中,

ML 07、机器学习中的距离度量

机器学习算法 原理.实现与实践 —— 距离的度量 声明:本篇文章内容大部分转载于July于CSDN的文章:从K近邻算法.距离度量谈到KD树.SIFT+BBF算法,对内容格式与公式进行了重新整理.同时,文章中会有一些对知识点的个人理解和归纳补充,不代表原文章作者的意图. 1. 欧氏距离 欧氏距离是最常见的两点之间或多点之间的距离表示法,又称之为欧几里得度量,它定义于欧几里得空间中,如点 $x = (x_1,\cdots,x_n)$ 和$y = (y_2,\cdots,y_n)$之间的距离为: $$

分布式高维空间近邻搜索项目开发

项目名称 分布式高维空间近邻搜索 项目描写叙述 眼下在互联网上高维空间搜索的算法非常多,但性能都不尽人意.比方KD树算法,强调互联网,是指本人能在互联网上搜索到的相关算法,假设某个公司内部有自己研究的算法也可能有不错的性能表现. 測试KD树的性能,50维度的数据,100万的数据用了600多毫秒,并且搜索结果与线性搜索的结果相差还非常大.鉴于此,我自己研究了一个搜索算法.64维度,100万的数据量,搜索前十个近期邻点,大概在200毫秒左右(PS:通过修正bug,算法在此环境中达到了20ms以内搜索

安卓开发之Kotlin和java双实现仿qq空间下拉图片拉伸

先不扯淡看今天要实现的效果: 话说使用Kotlin实现安卓功能,那我们还是要做一点准备工作,so,你得加一点插件到eclipse或android studio.然并卵,你现在还在使用eclipse开发的话我只能提供地址Kotlin Plugin for Eclipse,然后我使用的还是死丢丢. 死丢丢(android studio)集成kotlin安卓开发 要使用android studio开发kotlin的安卓app,那么你必须有开发kotlin的环境: Kotlin插件.打开Android

【Matlab开发】matlab中bar绘图设置与各种距离度量

[Matlab开发]matlab中bar绘图设置与各种距离度量 标签(空格分隔): [Matlab开发] [机器学习] 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ Matlab Bar图如何为每个bar设置不同颜色 data = [3, 7, 5, 2;4, 3, 2, 9;6, 6, 1, 4]; b = bar(data); 使用bar绘制非常直观简单,但有时需要突出显示某一个bar,比如该bar是一个标杆,用来衡量其bar的高度,所以可以用醒目

RBF神经网络——直接看公式,本质上就是非线性变换后的线性变化(RBF神经网络的思想是将低维空间非线性不可分问题转换成高维空间线性可分问题)

Deeplearning Algorithms tutorial 谷歌的人工智能位于全球前列,在图像识别.语音识别.无人驾驶等技术上都已经落地.而百度实质意义上扛起了国内的人工智能的大旗,覆盖无人驾驶.智能助手.图像识别等许多层面.苹果业已开始全面拥抱机器学习,新产品进军家庭智能音箱并打造工作站级别Mac.另外,腾讯的深度学习平台Mariana已支持了微信语音识别的语音输入法.语音开放平台.长按语音消息转文本等产品,在微信图像识别中开始应用.全球前十大科技公司全部发力人工智能理论研究和应用的实现