PyTorch中Tensor的维度变换实现


对于 PyTorch 的基本数据对象 Tensor (张量),在处理问题时,需要经常改变数据的维度,以便于后期的计算和进一步处理,本文旨在列举一些维度变换的方法并举例,方便大家查看。

维度查看:torch.Tensor.size()

查看当前 tensor 的维度

举个例子:

>>> import torch
>>> a = torch.Tensor([[[1, 2], [3, 4], [5, 6]]])
>>> a.size()
torch.Size([1, 3, 2])

张量变形:torch.Tensor.view(*args) → Tensor

返回一个有相同数据但大小不同的 tensor。 返回的 tensor 必须有与原 tensor 相同的数据和相同数目的元素,但可以有不同的大小。一个 tensor 必须是连续的 contiguous() 才能被查看。

举个例子:

>>> x = torch.randn(2, 9)
>>> x.size()
torch.Size([2, 9])
>>> x
tensor([[-1.6833, -0.4100, -1.5534, -0.6229, -1.0310, -0.8038, 0.5166, 0.9774,
     0.3455],
    [-0.2306, 0.4217, 1.2874, -0.3618, 1.7872, -0.9012, 0.8073, -1.1238,
     -0.3405]])
>>> y = x.view(3, 6)
>>> y.size()
torch.Size([3, 6])
>>> y
tensor([[-1.6833, -0.4100, -1.5534, -0.6229, -1.0310, -0.8038],
    [ 0.5166, 0.9774, 0.3455, -0.2306, 0.4217, 1.2874],
    [-0.3618, 1.7872, -0.9012, 0.8073, -1.1238, -0.3405]])
>>> z = x.view(2, 3, 3)
>>> z.size()
torch.Size([2, 3, 3])
>>> z
tensor([[[-1.6833, -0.4100, -1.5534],
     [-0.6229, -1.0310, -0.8038],
     [ 0.5166, 0.9774, 0.3455]],

    [[-0.2306, 0.4217, 1.2874],
     [-0.3618, 1.7872, -0.9012],
     [ 0.8073, -1.1238, -0.3405]]])

可以看到 x 和 y 、z 中数据的数量和每个数据的大小都是相等的,只是尺寸或维度数量发生了改变。

压缩 / 解压张量:torch.squeeze()、torch.unsqueeze()

  • torch.squeeze(input, dim=None, out=None)

将输入张量形状中的 1 去除并返回。如果输入是形如(A×1×B×1×C×1×D),那么输出形状就为: (A×B×C×D)

当给定 dim 时,那么挤压操作只在给定维度上。例如,输入形状为: (A×1×B),squeeze(input, 0) 将会保持张量不变,只有用 squeeze(input, 1),形状会变成 (A×B)。

返回张量与输入张量共享内存,所以改变其中一个的内容会改变另一个。

举个例子:

>>> x = torch.randn(3, 1, 2)
>>> x
tensor([[[-0.1986, 0.4352]],

    [[ 0.0971, 0.2296]],

    [[ 0.8339, -0.5433]]])
>>> x.squeeze().size() # 不加参数,去掉所有为元素个数为1的维度
torch.Size([3, 2])
>>> x.squeeze()
tensor([[-0.1986, 0.4352],
    [ 0.0971, 0.2296],
    [ 0.8339, -0.5433]])
>>> torch.squeeze(x, 0).size() # 加上参数,去掉第一维的元素,不起作用,因为第一维有2个元素
torch.Size([3, 1, 2])
>>> torch.squeeze(x, 1).size() # 加上参数,去掉第二维的元素,正好为 1,起作用
torch.Size([3, 2])

可以看到如果加参数,只有维度中尺寸为 1 的位置才会消失

  • torch.unsqueeze(input, dim, out=None)

返回一个新的张量,对输入的制定位置插入维度 1

返回张量与输入张量共享内存,所以改变其中一个的内容会改变另一个。

如果 dim 为负,则将会被转化 dim+input.dim()+1

接着用上面的数据举个例子:

>>> x.unsqueeze(0).size()
torch.Size([1, 3, 1, 2])
>>> x.unsqueeze(0)
tensor([[[[-0.1986, 0.4352]],

     [[ 0.0971, 0.2296]],

     [[ 0.8339, -0.5433]]]])
>>> x.unsqueeze(-1).size()
torch.Size([3, 1, 2, 1])
>>> x.unsqueeze(-1)
tensor([[[[-0.1986],
     [ 0.4352]]],

    [[[ 0.0971],
     [ 0.2296]]],

    [[[ 0.8339],
     [-0.5433]]]])

可以看到在指定的位置,增加了一个维度。

扩大张量:torch.Tensor.expand(*sizes) → Tensor

返回 tensor 的一个新视图,单个维度扩大为更大的尺寸。 tensor 也可以扩大为更高维,新增加的维度将附在前面。 扩大 tensor 不需要分配新内存,只是仅仅新建一个 tensor 的视图,其中通过将 stride 设为 0,一维将会扩展位更高维。任何一个一维的在不分配新内存情况下可扩展为任意的数值。

举个例子:

>>> x = torch.Tensor([[1], [2], [3]])
>>> x.size()
torch.Size([3, 1])
>>> x.expand(3, 4)
tensor([[1., 1., 1., 1.],
    [2., 2., 2., 2.],
    [3., 3., 3., 3.]])
>>> x.expand(3, -1)
tensor([[1.],
    [2.],
    [3.]])

原数据是 3 行 1 列,扩大后变为 3 行 4 列,方法中填 -1 的效果与 1 一样,只有尺寸为 1 才可以扩大,如果不为 1 就无法改变,而且尺寸不为 1 的维度必须要和原来一样填写进去。

重复张量:torch.Tensor.repeat(*sizes)

沿着指定的维度重复 tensor。 不同于 expand(),本函数复制的是 tensor 中的数据。

举个例子:

>>> x = torch.Tensor([1, 2, 3])
>>> x.size()
torch.Size([3])
>>> x.repeat(4, 2)
    [1., 2., 3., 1., 2., 3.],
    [1., 2., 3., 1., 2., 3.],
    [1., 2., 3., 1., 2., 3.]])
>>> x.repeat(4, 2).size()
torch.Size([4, 6])

原数据为 1 行 3 列,按行方向扩大为原来的 4 倍,列方向扩大为原来的 2 倍,变为了 4 行 6 列。

变化时可以看成是把原数据作成一个整体,再按指定的维度和尺寸重复,变成一个 4 行 2 列的矩阵,其中的每一个单位都是相同的,再把原数据放到每个单位中。

矩阵转置:torch.t(input, out=None) → Tensor

输入一个矩阵(2维张量),并转置0, 1维。 可以被视为函数 transpose(input, 0, 1) 的简写函数。

举个例子:

>>> x = torch.randn(3, 5)
>>> x
tensor([[-1.0752, -0.9706, -0.8770, -0.4224, 0.9776],
    [ 0.2489, -0.2986, -0.7816, -0.0823, 1.1811],
    [-1.1124, 0.2160, -0.8446, 0.1762, -0.5164]])
>>> x.t()
tensor([[-1.0752, 0.2489, -1.1124],
    [-0.9706, -0.2986, 0.2160],
    [-0.8770, -0.7816, -0.8446],
    [-0.4224, -0.0823, 0.1762],
    [ 0.9776, 1.1811, -0.5164]])
>>> torch.t(x) # 另一种用法
tensor([[-1.0752, 0.2489, -1.1124],
    [-0.9706, -0.2986, 0.2160],
    [-0.8770, -0.7816, -0.8446],
    [-0.4224, -0.0823, 0.1762],
    [ 0.9776, 1.1811, -0.5164]])

必须要是 2 维的张量,也就是矩阵,才可以使用。

维度置换:torch.transpose()、torch.Tensor.permute()

  • torch.transpose(input, dim0, dim1, out=None) → Tensor

返回输入矩阵 input 的转置。交换维度 dim0 和 dim1。 输出张量与输入张量共享内存,所以改变其中一个会导致另外一个也被修改。

举个例子:

>>> x = torch.randn(2, 4, 3)
>>> x
tensor([[[-1.2502, -0.7363, 0.5534],
     [-0.2050, 3.1847, -1.6729],
     [-0.2591, -0.0860, 0.4660],
     [-1.2189, -1.1206, 0.0637]],

    [[ 1.4791, -0.7569, 2.5017],
     [ 0.0098, -1.0217, 0.8142],
     [-0.2414, -0.1790, 2.3506],
     [-0.6860, -0.2363, 1.0481]]])
>>> torch.transpose(x, 1, 2).size()
torch.Size([2, 3, 4])
>>> torch.transpose(x, 1, 2)
tensor([[[-1.2502, -0.2050, -0.2591, -1.2189],
     [-0.7363, 3.1847, -0.0860, -1.1206],
     [ 0.5534, -1.6729, 0.4660, 0.0637]],

    [[ 1.4791, 0.0098, -0.2414, -0.6860],
     [-0.7569, -1.0217, -0.1790, -0.2363],
     [ 2.5017, 0.8142, 2.3506, 1.0481]]])
>>> torch.transpose(x, 0, 1).size()
torch.Size([4, 2, 3])
>>> torch.transpose(x, 0, 1)
tensor([[[-1.2502, -0.7363, 0.5534],
     [ 1.4791, -0.7569, 2.5017]],

    [[-0.2050, 3.1847, -1.6729],
     [ 0.0098, -1.0217, 0.8142]],

    [[-0.2591, -0.0860, 0.4660],
     [-0.2414, -0.1790, 2.3506]],

    [[-1.2189, -1.1206, 0.0637],
     [-0.6860, -0.2363, 1.0481]]])

可以对多维度的张量进行转置

  • torch.Tensor.permute(dims)

将 tensor 的维度换位

接着用上面的数据举个例子:

>>> x.size()
torch.Size([2, 4, 3])
>>> x.permute(2, 0, 1).size()
torch.Size([3, 2, 4])
>>> x.permute(2, 0, 1)
tensor([[[-1.2502, -0.2050, -0.2591, -1.2189],
     [ 1.4791, 0.0098, -0.2414, -0.6860]],

    [[-0.7363, 3.1847, -0.0860, -1.1206],
     [-0.7569, -1.0217, -0.1790, -0.2363]],

    [[ 0.5534, -1.6729, 0.4660, 0.0637],
     [ 2.5017, 0.8142, 2.3506, 1.0481]]])

直接在方法中填入各个维度的索引,张量就会交换指定维度的尺寸,不限于两两交换。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

时间: 2019-08-17

原文地址:https://www.cnblogs.com/leebxo/p/11827819.html

时间: 2024-07-30 21:11:35

PyTorch中Tensor的维度变换实现的相关文章

[Pytorch]Pytorch中tensor常用语法

原文地址:https://zhuanlan.zhihu.com/p/31494491 上次我总结了在PyTorch中建立随机数Tensor的多种方法的区别. 这次我把常用的Tensor的数学运算总结到这里,以防自己在使用PyTorch做实验时,忘记这些方法应该传什么参数. 总结的方法包括: Tensor求和以及按索引求和:torch.sum() torch.Tensor.indexadd() Tensor元素乘积:torch.prod(input) 对Tensor求均值.方差.极值: torch

pytorch中tensor张量的创建

import torch import numpy as np print(torch.tensor([1,2,3])) print(torch.tensor(np.arange(15).reshape(3,5))) print(torch.empty([3,4])) print(torch.ones([3,4])) print(torch.zeros([3,4])) #0-1之间的随机数 print(torch.rand([2,3])) #3-10之间的随机整数 print(torch.ran

pytorch张量数据索引切片与维度变换操作大全(非常全)

(1-1)pytorch张量数据的索引与切片操作1.对于张量数据的索引操作主要有以下几种方式:a=torch.rand(4,3,28,28):DIM=4的张量数据a(1)a[:2]:取第一个维度的前2个维度数据(不包括2):(2)a[:2,:1,:,:]:取第一个维度的前两个数据,取第2个维度的前1个数据,后两个维度全都取到:(3)a[:2,1:,:,:]:取第一个维度的前两个数据,取第2个维度的第1个索引到最后索引的数据(包含1),后两个维度全都取到:(4)a[:2,-3:]:负号表示第2个维

tensor维度变换

维度变换是tensorflow中的重要模块之一,前面mnist实战模块我们使用了图片数据的压平操作,它就是维度变换的应用之一. 在详解维度变换的方法之前,这里先介绍一下View(视图)的概念.所谓View,简单的可以理解成我们对一个tensor不同维度关系的认识.举个例子,一个[ b,28,28,1 ]的tensor(可以理解为mnist数据集的一组图片),对于这样一组图片,我们可以有一下几种理解方式: (1)按照物理设备储存结构,即一整行的方式(28*28)储存,这一行有连续的784个数据,这

pytorch之Tensor

#tensor和numpy import torch import numpy as np numpy_tensor = np.random.randn(3,4) print(numpy_tensor) #将numpy的ndarray转换到tendor上 pytorch_tensor1 = torch.Tensor(numpy_tensor) pytorch_tensor2 = torch.from_numpy(numpy_tensor) print(pytorch_tensor1) print

Pytorch 中的 dim

Pytorch 中对 tensor 的很多操作如 sum.argmax.unsqueeze 等都可以设置 dim 参数用来指定操作在哪一维进行.Pytorch 中的 dim 类似于 numpy 中的 axis,这篇文章来总结一下 Pytorch 中的 dim 操作. dim 与方括号的关系 创建一个矩阵 a = torch.tensor([[1, 2], [3, 4]]) print(a) 输出 tensor([[1, 2], [3, 4]]) 因为a是一个矩阵,所以a的左边有 2 个括号 括号

PyTorch中scatter和gather的用法

PyTorch中scatter和gather的用法 闲扯 许久没有更新博客了,2019年总体上看是荒废的,没有做出什么东西,明年春天就要开始准备实习了,虽然不找算法岗的工作,但是还是准备在2019年的最后一个半月认真整理一下自己学习的机器学习和深度学习的知识. scatter的用法 scatter中文翻译为散射,首先看一个例子来直观感受一下这个API的功能,使用pytorch官网提供的例子. import torch import torch.nn as nn x = torch.rand(2,

tensor的维度扩张的手段--Broadcasting

broadcasting是tensorflow中tensor维度扩张的最常用的手段,指对某一个维度上重复N多次,虽然它呈现数据已被扩张,但不会复制数据. 可以这样理解,对 [b,784]@[784,10]+[10]这样一个操作([10]可以理解为偏置项),那么原式可以化为[b,10]+[10],但是[b,10]和[10]这两个tensor是不能直接相加的,两者必须化为相一致维度的单元才能相加,即,把[10]扩张为[b,10],两者才能相加,而broadcasting做的就是这样一件事. 如果上面

【GISER&&Painter】Chapter02:WebGL中的模型视图变换

上一节我们提到了如何在一张画布上画一个简单几何图形,通过创建画布,获取WebGLRendering上下文,创建一个简单的着色器,然后将一些顶点数据绑定到gl的Buffer中,最后通过绑定buffer数据,提供buffer中顶点数据的情况,执行渲染绘制方法,将数据结果从buffer中刷新到帧缓存中.整个流程十分清晰明了,可是通过对比原来OpenGL中的整个流程,我们会发现其中还缺少了一些很重要的处理步骤,虽然我们创建了属于自己的着色器,可并没有对顶点数据进行类似于顶点处理管线中的模型视图变换.透视