基于 HTML5 + WebGL 的宇宙 3D 展示系统

前言

近年来随着引力波的发现、黑洞照片的拍摄、火星上存在水的证据发现等科学上的突破,以及文学影视作品中诸如《三体》、《流浪地球》、《星际穿越》等的传播普及,宇宙空间中那些原本遥不可及的事物离我们越来越近,人们对未知文明的关注和对宇宙空间的好奇达到了前所未有的高度。站在更高的立足点上,作为人类这个物种中的一员,我们理所应当对我们生活的星球、所在的太阳系有一定的认识,对 8 大行星各自的运行轨道、质量、资源存储量甚至是地形有一定的了解。

本系统采用 Hightopo 的 HT for Web 产品来构造轻量化的 3D 可视化场景。

Solar System 这套系统主要用于两种场景:

  1.作为科研成果、新发现的载体,做 3D 太空数据可视化呈现,用于向普通民众科普太阳系的构成、各行星组织结构等知识,可置于博物馆大屏、学校大屏,也可用于互联网产品,作为航空航天类网站的门户页、展示页。

  2.作为宇航局、航空航天相关研究机构的驾驶舱,在 3D 可视化界面中对行星相对位置、星体状态、星体气象、星体地形有一个直观快速的了解,在宇宙空间探索越来越成功的当下,在数据传输技术得到速度和质量上的突破后,甚至可以通过该系统对行星状态做实时监控呈现,对宇航员的作业点、作业情况做在线监控。在配置上人造卫星轨道、监控区域的数据后,本系统可用作卫星系统,描述覆盖范围和呈现观测数据。

预览地址: https://www.hightopo.com/demo/solar-system/

界面简介及效果预览 

主题一:太阳系检测系统

本系统主要展示8大行星绕太阳公转轨道、相对位置、星体质量、资源含量等信息。

右上角行星按钮会触发视角切换,切换至相对应的行星观测点

this.g3d.flyTo(data, {
    animation: {
        duration: 1000,
        easing: function (t) {
            return (2-t) * t;
        }
    },
    distance: 2000
});

效果:

该主题提供两种视角,鸟瞰和斜视,其它视角可以通过鼠标自行旋转

两种视角的切换由右上角第二、三个圆形按钮触发。

调用 moveCamera 方法重新设置相机位置:

/**

 * 切换镜头
 * @param {Number} num - 主题编号
 */
triggerThemeCamera(num) {
    //...
    this.g3d.moveCamera(
        [ 6742.5, 4625.6, -836.7],
        [0, 0, 0],
        {
            duration: 500,
            easing: function (t) {
                return (2-t) * t;
            }
        }
    );
}

效果:

信息框默认采用跟随星体一起旋转,这可以达到俯视视角不出现信息框,看起来更清爽。

如果需要查看星体详情,可以通过点击右上角播放按钮,该按钮会触发所有信息框朝向屏幕方向。

通过改变消息面板 shape3d.autorotate 来实现:

setBillboardToCamera(flag) {

    const list = this.dm3d.getDatas();
    list.each( item => {
        if (item instanceof ht.Node) {
            if (/_board$/.test(item.getTag())) {
                if (flag) {
                    item.s(‘shape3d.autorotate‘, true);
                }
                else {
                    item.s(‘shape3d.autorotate‘, false);
                }
            }
        }
    });
}

效果:

主题二:戴森球星体 3D 拓扑结构

本系统主要展示用户所点选的行星与其它星际物质的相互作用,也可用于展示行星周围卫星的分布情况,以及展示星体间引力、辐射范围等的拓扑结构。

鼠标悬停在一个星体上会触发选中状态,右侧会监控该星体的相关数据。

通过监听 mousemove 后调用 resetPinkOutside 方法,将粉色边框重新设置到悬停的 node 位置:

/**

 * 重新设置边框
 * @param node
 */
resetPinkOutside(node) {
    const pinkOutside = this.dm3d.getDataByTag(‘billboard4‘);
    pinkOutside.setPosition3d(node.getPosition3d()[0],node.getPosition3d()[1],node.getPosition3d()[2]);
}

效果:

主题三:星体气象、地形检测系统

该主题主要用于呈现在场景二中点选的星体上具体的检测点位,点位周边的等高线在左侧自动生成一个 3D 的地形和闪烁的点位示意,并与右侧的检测点位一一对应。

该功能可用于地形的呈现,也可以用于星体大气层的气象状态展示。

左下角实时监控点位的地质热量、气象流动数据。

点选右侧对应检测点,会触发右侧点的缩放动画,同时左侧对应的 3D 点位也会同步变化,其它的点则调用 setAnimation(null)

setTwinkleToPoints(flag) {

    //...
    if (flag) {
        if (point1_3D && point1) {
            if (this.animationFlags.twinklePointNum === 1) {
                point1_3D.setAnimation({
                    change: {},
                    start: ["change"]
                });
                point1.setAnimation({
                    width: {},
                    height: {},
                    start: ["width", "height"]
                });
            } else {
                SolarSystem.disableTwinkle(point1_3D, point1);
            }
        } else {
            SolarSystem.disableTwinkle(point1_3D, point1);
            //...
        }
    }
}

效果:

关联:三个主题(系统)的联动

三个系统是互相关联的,相互切换的方式有三种。

  1.点选左上角的切换按钮:

  左上角部分均为导航栏的响应范围,鼠标悬停时会改变动画控制器 animationFlags 的对应值,触发导航栏落下来,悬停和点选按钮会通过 setImage 方法设置不同的背景

this.g2d.getView().addEventListener(‘mousemove‘, event => {

    const node = this.g2d.getDataAt(event);
    let tag = ‘‘;
    if (node) {
        tag = node.getTag();
    }
    if(‘navigator‘ === tag){
        if(!this.animationFlags.navigatorRotate && this.animationFlags.navAnimationDone){
            this.animationFlags.navAnimationDone = false;
            this.animationControl(0, true);
        }
        this.resetButtonStyle();
    }
    else if (/^navButton/.test(tag)) {
        this.animationFlags.navButtonOnHover = true; // 防止动画过快导致无法点选按钮
        this.resetButtonStyle();
        if (!node.a(‘buttonOnClick‘)) {
            node.setImage(‘buttonOnHover‘);
        }
    }
    else {
        this.resetButtonStyle();
        this.animationFlags.navButtonOnHover = false;
        if(this.animationFlags.navigatorRotate && this.animationFlags.navAnimationDone){
            setTimeout(() => {
                if(!this.animationFlags.navButtonOnHover){
                    this.animationFlags.navButtonOnHover = true;
                    this.animationFlags.navAnimationDone = false;
                    this.animationControl(0, false);
                }
            }, 500);
        }
    }
}, false);

效果:

  2.点击最下方的标尺栏,分别对应 3 个模块:

  3.点选主题一中的行星跳转到的主题二的拓扑结构,点选主题二的星体跳转主题三的地形,主题三无法向前关联,只能通过前两种方式进行跳转:

总结:

该系统使用轻量高效的 ht 库,矢量平面信息与 3D 对象进行关联,并采用 3D 拓扑可视化呈现,相对位置清晰直观,3D 地形与等高线图对应,海拔高度和相互遮挡关系都可以准确把握。

该系统满足了最基本的太空场景和数据呈现的框架,更为详尽的数据呈现和业务功能有待相关的工作人员根据具体的业务场景提出更详尽的需求。

原文地址:https://www.cnblogs.com/xhload3d/p/12098507.html

时间: 2024-08-26 03:44:51

基于 HTML5 + WebGL 的宇宙 3D 展示系统的相关文章

基于 HTML5 + WebGL 的无人机 3D 可视化系统

前言 近年来,无人机的发展越发迅速,既可民用于航拍,又可军用于侦察,涉及行业广泛,也被称为“会飞的照相机”.但作为军事使用,无人机的各项性能要求更加严格.重要.本系统则是通过 Hightopo 的  HT for Web  产品来搭建的一款 无人机 3D 可视化系统,通过对无人机及其信息的全景展示来模拟无人机状态的监控. 系统中包含 4 种展示模式:实体模式 .热力模式.线框模式和内部模式,通过飞机下方操作按钮即可进行模式切换. 预览地址:https://hightopo.com/demo/pl

基于HTML5 WebGL的工业化3D电子围栏

前言 现代工业化的推进在极大加速现代化进程的同时也带来的相应的安全隐患,在传统的可视化监控领域,一般都是基于 Web SCADA 的前端技术来实现 2D 可视化监控,本系统采用 Hightopo 的 HT for Web 产品来构造轻量化的 3D 可视化场景,该 3D 场景从正面展示了一个现代化工厂的现实场景,包括工厂工人的实时位置.电子围栏的范围.现场的安全情况等等,帮助我们直观的了解当前工厂人员的安全状况. 本篇文章通过对工厂可视化场景的搭建和模型的加载,人物实时定位代码的实现.电子围栏和轨

基于 HTML5 + WebGL 的宇宙(太阳系) 3D 可视化系统

前言 近年来随着引力波的发现.黑洞照片的拍摄.火星上存在水的证据发现等科学上的突破,以及文学影视作品中诸如<三体>.<流浪地球>.<星际穿越>等的传播普及,宇宙空间中那些原本遥不可及的事物离我们越来越近,人们对未知文明的关注和对宇宙空间的好奇达到了前所未有的高度.站在更高的立足点上,作为人类这个物种中的一员,我们理所应当对我们生活的星球.所在的太阳系有一定的认识,对 8 大行星各自的运行轨道.质量.资源存储量甚至是地形有一定的了解. 本系统采用 Hightopo 的 H

基于 HTML5 WebGL 的 水泥工厂可视化系统

前言 如今的制造行业,基于数据进行生产策略制定与管理已经成为一种趋势,特别是 工业4.0 的浪潮下,数据战略已经成为很多制造企业的优先战略,而数据可视化以更直观的方式,帮助指导决策,成为数据分析传递信息的重要工具.通过数据可视化系统助力实现数据驱动的工业世界,为 工业4.0 提供更加灵活.敏捷.高效.个性化的数据支撑.今天就给大家带来一个采用 Hightopo 的 HT for Web 产品实现了一个水泥工厂可视化系统. 系统预览 本案例共有七个子系统: 数据概况 -- 展示全厂年月时间单位的各

基于 HTML5 和 WebGL 的地铁站 3D 可视化系统

前言 工业互联网,物联网,可视化等名词在我们现在信息化的大背景下已经是耳熟能详,日常生活的交通,出行,吃穿等可能都可以用信息化的方式来为我们表达,在传统的可视化监控领域,一般都是基于 Web SCADA 的前端技术来实现 2D 可视化监控,本系统采用 Hightopo 的 HT for Web 产品来构造轻量化的 3D 可视化场景,该 3D 场景从正面展示了一个地铁站的现实场景,包括地铁的实时运行情况,地铁上下行情况,视频监控,烟雾报警,电梯运行情况等等,帮助我们直观的了解当前的地铁站. 系统中

基于 HTML5 + WebGL 实现 3D 可视化地铁系统

前言 工业互联网,物联网,可视化等名词在我们现在信息化的大背景下已经是耳熟能详,日常生活的交通,出行,吃穿等可能都可以用信息化的方式来为我们表达,在传统的可视化监控领域,一般都是基于 Web SCADA 的前端技术来实现 2D 可视化监控,本系统采用 Hightopo 的 HT for Web 产品来构造轻量化的 3D 可视化场景,该 3D 场景从正面展示了一个地铁站的现实场景,包括地铁的实时运行情况,地铁上下行情况,视频监控,烟雾报警,电梯运行情况等等,帮助我们直观的了解当前的地铁站. 系统中

HTML5+WebGL 的加油站 3D 可视化监控

前言 随着数字化,工业互联网,物联网的发展,我国加油站正向有人值守,无人操作,远程控制的方向发展,传统的人工巡查方式逐渐转变为以自动化控制为主的在线监控方式,即采用数据采集与监控系统 SCADA.SCADA 系统的推广使用,大大提高了我国加油站的监控效率,本文所讲的则是通过对加油站的可视化建模,结合 HT 的 3D 可视化以及 2D 监控面板来实现对加油站的可视化监控.三维可视化监控系统是将三维的可视化技术和数据采集与监控技术融合,充分发挥了两种技术的核心优势,并通过数据库进行数据共享,共同构成

基于 HTML5 WebGL 的智慧城市(一)

前言 中共中央.国务院在今年12月印发了<长江三角洲区域一体化发展规划纲要>(下文简称<纲要>),并发出通知,要求各地区各部门结合实际认真贯彻落实. <纲要>强调,要提升基础设施互联互通水平,打造数字长三角,协同建设新一代信息基础设施,共同推动重点领域智慧应用.大力发展基于物联网.大数据.人工智能的专业化服务,提升各领域融合发展.信息化协同和精细化管理水平.围绕城市公共管理.公共服务.公共安全等领域,支持有条件的城市建设基于人工智能和 5G 物联的城市大脑集群. 城市治

基于 HTML5 WebGL 构建智能数字化城市 3D 全景

前言 自 2011 年我国城镇化率首次突破 50% 以来,<新型城镇化发展规划>将智慧城市列为我国城市发展的三大目标之一,并提出到 2020 年,建成一批特色鲜明的智慧城市.截至现今,全国 95% 的副省级以上城市.76% 的地级以上城市,总计约 500 多个城市提出或在建智慧城市. 基于这样的背景,本系统采用 Hightopo 的  HT for Web  产品来构造轻量化的 智慧城市 3D 可视化场景,通过三个角度的转换,更清晰让我们感知到 5G 时代下数字化智能城市的魅力 预览地址:HT