基于贝叶斯的人脸验证

1. 贝叶斯分类的基础——贝叶斯定理

这个定理解决了现实生活里经常遇到的问题:已知某条件概率,如何得到两个事件交换后的概率,也就是在已知P(A|B)的情况下如何求得P(B|A)。这里先解释什么是条件概率:

P(A|B)表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概率。其基本求解公式为:

贝叶斯定理之所以有用,是因为我们在生活中经常遇到这种情况:我们可以很容易直接得出P(A|B),P(B|A)则很难直接得出,但我们更关心P(B|A),贝叶斯定理就为我们打通从P(A|B)获得P(B|A)的道路。

下面不加证明地直接给出贝叶斯定理:

例如,医生对病人进行诊断就是一个典型的分类过程,任何一个医生都无法直接看到病人的病情,只能观察病人表现出的症状和各种化验检测数据来推断病情,这时医生就好比一个分类器,而这个医生诊断的准确率,与他当初受到的教育方式(构造方法)、病人的症状是否突出(待分类数据的特性)以及医生的经验多少(训练样本数量)都有密切关系。

2. Bayesian Face

原文地址:https://www.cnblogs.com/zhaopengpeng/p/12186550.html

时间: 2024-11-06 11:38:41

基于贝叶斯的人脸验证的相关文章

Knowledge Tracing -- 基于贝叶斯的学生知识点追踪(BKT)

目前,教育领域通过引入人工智能的技术,使得在线的教学系统成为了智能教学系统(ITS),ITS不同与以往的MOOC形式的课程.ITS能够个性化的为学生制定有效的 学习路径,通过根据学生的答题情况追踪学生当前的一个知识点掌握状况,从而可以做到因材施教. 在智能教学系统中,当前有使用以下三种模型对学生的知识点掌握状况进行一个追踪判断:     IRT(Item response theory)  项目反应理论     BKT(Bayesin knowledge tracing) 基于贝叶斯网络的学生知

基于贝叶斯优化的超参数tuning

https://arimo.com/data-science/2016/bayesian-optimization-hyperparameter-tuning/ 贝叶斯优化:使用高斯过程作为代理函数,并且通常优化提升幅度的期望Expected Improvement(新试验相对当前最好观测的提升的期望).高斯过程是一组函数的分布.高斯过程中的一个样本包括一组函数.训练高斯过程会拟合训练数据的分布,因此能产生和观测数据相近的函数.使用高斯过程,我们可以计算搜索空间中任意点的期望提升.然后将期望提升

基于贝叶斯压缩感知的图像压缩和重建代码

主要利用了Shihao Ji 08年发表的<Bayesian Compressive Sensing>的论文代码,先将图片进行小波变换,得到稀疏系数,采样,然后重建稀疏系数,小波逆变换得到原来的图像.具体的代码如下. %要运行本程序需要下载另外两个程序包. %1:http://www.eee.hku.hk/~wsha/Freecode/freecode.htm %(Compressive sensing for image using wavelet %transform and orthog

机器学习实战读书笔记(四)基于概率论的分类方法:朴素贝叶斯

4.1 基于贝叶斯决策理论的分类方法 朴素贝叶斯 优点:在数据较少的情况下仍然有效,可以处理多类别问题 缺点:对于输入数据的准备方式较为敏感 适用数据类型:标称型数据 贝叶斯决策理论的核心思想:选择具有最高概率的决策. 4.2 条件概率 4.3 使用条件概率来分类 4.4 使用朴素贝叶斯进行文档分类 朴素贝叶斯的一般过程: 1.收集数据 2.准备数据 3.分析数据 4.训练算法 5.测试算法 6.使用算法 朴素贝叶斯分类器中的另一个假设是,每个特征同等重要. 4.5 使用Python进行文本分类

第四章:基于概率论的分类方法: 朴素贝叶斯

本章内容□使用概率分布进行分类□学习朴素贝叶斯分类器□解析RSS源数据口使用朴素贝叶斯来分析不同地区的态度 前两章我们要求分类器做出艰难决策,给出“该数据实例属于哪一类”这类问题的明确答案.不过,分类器有时会产生错误结果,这时可以要求分类器给出一个最优的类别猜测结果,同时给出这个猜测的概率估计值.       概率论是许多机器学习算法的基础,所以深刻理解这一主题就显得十分重要.第3章在计算特征值取某个值的概率时涉及了一些概率知识,在那里我们先统计特征在数据集中取某个特定值的次数,然后除以数据集的

《机器学习实战》学习笔记:基于朴素贝叶斯的分类方法

概率是许多机器学习算法的基础,在前面生成决策树的过程中使用了一小部分关于概率的知识,即统计特征在数据集中取某个特定值的次数,然后除以数据集的实例总数,得到特征取该值的概率. 目录: 一.基于贝叶斯理论的分类方法 二.关于朴素贝叶斯的应用场景 三.基于Python和朴素贝叶斯的文本分类 1.准备数据 2.训练算法 3.测试算法 四.小结 以下进入正文: 一.基于贝叶斯理论的分类方法 假设有两类数据组成的数据集如下: 其中,假设两个概率分布的参数已知,并用p1(x,y)表示当前数据点(x,y)属于类

《机器学习实战》学习笔记:基于朴素贝叶斯的垃圾邮件过滤

概率是许多机器学习算法的基础,在前面生成决策树的过程中使用了一小部分关于概率的知识,即统计特征在数据集中取某个特定值的次数,然后除以数据集的实例总数,得到特征取该值的概率. 之前的基础实验中简单实现了朴素贝叶斯分类器,并正确执行了文本分类,这一节将贝叶斯运用到实际场景,垃圾邮件过滤这一实际应用. 实例:使用朴素贝叶斯过滤垃圾邮件 在上一节:http://blog.csdn.net/liyuefeilong/article/details/48383175中,使用了简单的文本文件,并从中提取了字符

概率--学习朴素贝叶斯分布

概率是一种基于事件发生可能性来描述未来趋势的数学工具.其本质就是通过过去已经发生的事情来推断未来事件,并且将这种推断放在一系列的公理化的数学空间当中进行考虑.例如,抛一枚均质硬币,正面向上的可能性多大?概率值是一个0-1之间的数字,用来衡量一个事件发生可能性的大小.概率值越接近于1,事件发生的可能性越大,概率值越接近于0,事件越不可能发生.天气预报员通常会使用像"明天80%的可能性会下雨"这样的术语来对降雨进行预测,这里70%或者0.7就是下雨的概率.在现实生活中,要么下雨,要么不下雨

贝叶斯推断及其互联网应用(三):拼写检查

(这个系列的第一部分介绍了贝叶斯定理,第二部分介绍了如何过滤垃圾邮件,今天是第三部分.) 使用Google的时候,如果你拼错一个单词,它会提醒你正确的拼法. 比如,你不小心输入了seperate. Google告诉你,这个词是不存在的,正确的拼法是separate. 这就叫做"拼写检查"(spelling corrector).有好几种方法可以实现这个功能,Google使用的是基于贝叶斯推断的统计学方法.这种方法的特点就是快,很短的时间内处理大量文本,并且有很高的精确度(90%以上).