Leetcode(4)寻找两个有序数组的中位数
[题目表述]:
给定一个字符串 s,找到 s 中 最长 的回文子串。你可以假设 s 的最大长度为 1000。‘
第一种方法:未完成;利用回文子串的特点
一开始我的思路如下:回文子串的特点是首尾字母相同,所以我对每一个字母都找到位于它后面的相同字母,利用切片判断这一段是否为回文子串(str[i:j]==str[i:j][::-1]).时间复杂度很高,主要是因为str.find操作非常耗时.
class Solution(object):
def longestPalindrome(self, s):
"""
:type s: str
:rtype: str
"""
res=""
res+=s[0]
res_star=0
res_end=0
Maxsize=1
for i in range(len(s)):
nPos=i
i_number=s[i:].count(s[i])
if i_number==1:
continue
while i_number!=1:
if s[i+1]==s[i]:
i_number=i_number-1
nPos=i+1
if Maxsize!=max(Maxsize,len(s[i:nPos+1])):
Maxsize=len(s[i:nPos+1])
res_star,res_end=i,nPos+1
res+=s[i:nPos+1]
else:
nPos=s[nPos+1:].index(s[i])
i_number=i_number-1
if s[i:nPos+1]==s[i:nPos+1:-1]:
if Maxsize!=max(Maxsize,len(s[i:nPos+1])):
res_star,res_end=i,nPos+1
res+=s[i:nPos+1]
return res[res_star:res_end+1]
学习
- str.find /str.index
- 切片 回文子串
第二种方法:动态规划
执行用时:3828 ms; 内存消耗:11.7MB 效果:有点差 O(n2)
class Solution:
def longestPalindrome(self, s):
"""
:type s: str
:rtype: str
"""
max = 0
palindromic = '' if len(s) == 0 else s[0]
for i in range(len(s)):
length = 1
while i - length >=0 and i + length < len(s) and s[i-length] == s[i+length]:
tmp = s[i-length:i+length+1] ##奇回文
if len(tmp) > max:
max = len(tmp)
palindromic = tmp
length += 1
length = 1
while i - length + 1 >=0 and i + length < len(s) and s[i-length+1] == s[i+length]:
tmp = s[i-length+1:i+length+1] ##偶回文
if len(tmp) > max:
max = len(tmp)
palindromic = tmp
length += 1
return palindromic
学习
- 动态规划的思想是首先判断相邻的字符串是否是回文,然后继续判断连续的三个字符是否是回文,然后是四个,…,直到判断完整个字符串 ——对子串的判断;状态转换
- 动态规划思想
- 奇偶回文
第三种方法:Manacher马拉车法:添加辅助标志
执行用时:80 ms; 内存消耗:12MB 效果:非常好 O(n)
[理论文章!]
class Solution:
#Manacher algorithm
#http://en.wikipedia.org/wiki/Longest_palindromic_substring
def longestPalindrome(self, s):
# Transform S into T.
# For example, S = "abba", T = "^#a#b#b#a#$".
# ^ and $ signs are sentinels appended to each end to avoid bounds checking
T = '#'.join('^{}$'.format(s))
n = len(T)
P = [0] * n
C = R = 0
for i in range (1, n-1): ##首尾是终止符
P[i] = (R > i) and min(R - i, P[2*C - i]) # equals to i' = C - (i-C) #如果R>i且R-i大,则P[i]=P[j]
# Attempt to expand palindrome centered at i 两者相等,因为R范围内对称
while T[i + 1 + P[i]] == T[i - 1 - P[i]]:
P[i] += 1
# If palindrome centered at i expand past R,
# adjust center based on expanded palindrome.
if i + P[i] > R: #最终求出P[i]后设立新C,R C=center R=range 利用2*C-i拉着i走一样
C, R = i, i + P[i]
# Find the maximum element in P.
maxLen, centerIndex = max((n, i) for i, n in enumerate(P))
return s[(centerIndex - maxLen)//2: (centerIndex + maxLen)//2] #因为len(P)=len(s)两倍多
学习:
- 两头需要边界符
- 字符.join
- 马拉车算法思想
- list.enumerate()
第四种方法:新增字母判断是否仍是回文
执行用时:72 ms; 内存消耗:11.8MB 效果:非常好 O(n) 由于使用切片,所以比马拉车快
class Solution:
# @return a string
def longestPalindrome(self, s):
if len(s)==0:
return s
maxLen=1
start=0
for i in xrange(len(s)):
if i-maxLen >=1 and s[i-maxLen-1:i+1]==s[i-maxLen-1:i+1][::-1]:
start=i-maxLen-1
maxLen+=2
continue
if i-maxLen >=0 and s[i-maxLen:i+1]==s[i-maxLen:i+1][::-1]:
start=i-maxLen
maxLen+=1
return s[start:start+maxLen]
学习
- 思路是:遍历,第i个字母加上后面一个字母,看i-Max-1到i+1(就是从第i个往后面看)是不是回文,如果是,则回文串起点跟Max被记录下来;如果这样不是,那就看i-Max到i+1是不是回文,如果是也是一样的操作。
- 因为前面字符串加上新的字符是回文的话,就只有两种可能性,
①:bb+b这种 ②:a bb+a这种,①记录下Max=2,
②则在a前面Max+1找,即是i-Max-1,然后记录下Max=3,
做切片的时候就是start:start+Max,Max自动会-1的,保证半径符合。
原文地址:https://www.cnblogs.com/ymjun/p/11645119.html
时间: 2024-10-10 18:02:29