题目大意
给你一个带权无向图,满足图上任意一条边最多属于一个环,有\(q\)个询问,求\(u,v\)之间的最短路。
\(n,q\leq 10000\)
Solution
首先用Tarjan建一棵以\(1\)为根的搜索树,找出每个环,记录环的总长,将环内每个点\(u\)连向环内\(dfs\)序最小的点\(v\),边权为\(u\)到\(v\)的最短路,然后把不在环上的边照旧连上,这样我们就得到了一棵树。
现在要求\(a\)到\(b\)的最短路,我们考虑倍增,若两个点在一条链上,它们的最短路就是树上的距离。若两个点不在一条链上,设\(u\)和\(v\)分别为\(a\)和\(b\)到\(lca\)的链上\(lca\)下面那个点,若\(u,v\)在原图中不在一个环,\(a,b\)的最短路就是它们在树上的距离,若\(u,v\)在原图中在一个环,则\(u\)到\(v\)有两种走法,我们要取最小值,然后再加上\(a\)到\(u\)的距离和\(b\)到\(v\)的距离。
这里有个小技巧,我们可以先在原图上从\(1\)开始求出\(1\)到每个点的最短路\(dis[i]\),那么将环上每个点\(u\)连向\(dfs\)序最小的点\(v\)时,边权就是\(dis[u]-dis[v]\),后面求树上两点距离时也是用\(dis\)数组求。
Code
#include<vector>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=10007,M=600007;
ll Abs(ll a){return a>0?a:-a;}
int n,m,q;
int tot,cnt,st[N],to[M],nx[M],dep[N],col[N];
ll len[M],dis[N],sum[N],totlen[N];
vector<int> son[N];
void add(int u,int v,ll w){to[++tot]=v,nx[tot]=st[u],len[tot]=w,st[u]=tot;}
int head,tail,que[M],vis[N];
void spfa(){
memset(dis,0x3f,sizeof(dis));memset(vis,0,sizeof(vis));
head=1,que[tail=1]=1,dis[1]=0,vis[1]=1;
while(head<=tail){
int u=que[head++];vis[u]=0;
for(int i=st[u];i;i=nx[i])if(dis[u]+len[i]<dis[to[i]]){
dis[to[i]]=dis[u]+len[i];
if(!vis[to[i]])que[++tail]=to[i],vis[to[i]]=1;
}
}
}
int tid,dfn[N],anc[N][15];
void dfs(int u,int from){
dfn[u]=++tid;
for(int i=st[u];i;i=nx[i]){
if(!dfn[to[i]])anc[to[i]][0]=u,sum[to[i]]=sum[u]+len[i],dfs(to[i],u);
else if(to[i]!=from&&dfn[to[i]]<dfn[u]){
++cnt,totlen[cnt]=sum[u]-sum[to[i]]+len[i];
for(int j=u,t;j!=to[i];)son[to[i]].push_back(j),col[j]=cnt,t=anc[j][0],anc[j][0]=to[i],j=t;
}
}
if(anc[u][0]==from)son[from].push_back(u);
}
void dfs1(int u){
for(int i=0;i<son[u].size();++i)dep[son[u][i]]=dep[u]+1,dfs1(son[u][i]);
}
ll qry(int u,int v){
if(dep[u]<dep[v])swap(u,v);
int a=u,b=v;
for(int i=14;i>=0;--i)if(dep[anc[u][i]]>=dep[v])u=anc[u][i];
if(u==v)return dis[a]-dis[b];
for(int i=14;i>=0;--i)if(anc[u][i]!=anc[v][i])u=anc[u][i],v=anc[v][i];
if(col[u]&&col[u]==col[v])return dis[a]-dis[u]+dis[b]-dis[v]+min(Abs(sum[u]-sum[v]),totlen[col[u]]-Abs(sum[u]-sum[v]));
return dis[a]+dis[b]-2*dis[anc[u][0]];
}
int main(){
scanf("%d%d%d",&n,&m,&q);
for(int i=1;i<=m;++i){
int u,v;ll w;
scanf("%d%d%lld",&u,&v,&w),add(u,v,w),add(v,u,w);
}
spfa();
dfs(1,1);
dep[1]=1,dfs1(1);
for(int j=1;j<=14;++j)for(int i=1;i<=n;++i)anc[i][j]=anc[anc[i][j-1]][j-1];
while(q--){
int u,v;
scanf("%d%d",&u,&v);
printf("%lld\n",qry(u,v));
}
return 0;
}
原文地址:https://www.cnblogs.com/zjlcnblogs/p/12088697.html
时间: 2024-09-30 17:15:06