深入理解Linux内核-内存寻址

1、逻辑地址怎么转换为线性地址的:

逻辑地址 = 段选择符(16bit)+偏移量(32bit)

段选择符又三部分组成:index(索引序号)、T1(表指示器)、RPL(request privilege level 请求者特权级)

索引序号:指向GDT(global descriptor table 全局描述符表)或者LDT(local descriptor table 局部描述符表)中的段描述符。

表指示器:标记指向GDT或者LDT

RPL:分为用户态(3),或者内核态(0)

段描述符:64bit,主要字段 Base(段的首字节的线性地址 32bit)、Limit(段的长度)、DPL(描述特权级)等

段描述符的地址 = GDT(LDT)的地址(存放在gdtr、ldtr寄存器) + index * 8(因为一个段描述符8字节)

逻辑地址 = 段描述符中的Base + 偏移量

注意:1、linux 中很少使用分段,它偏向是否分页   2、主要的4个段分别为用户代码段、用户数据段、内核代码段、内核数据段     3、并且它们的Base值均为0,即所有到段的线性地址都从0开始     4、即Linux下逻辑地址的便宜量与对应的线性地址的值总是一致的       

2、线性地址怎么转换为物理地址的?

页 :4096个字节,包含页内地址、数据

页框:物理页,4096字节,不含页内数据

分页:为了效率,线性地址被分成以固定长度为单位的页;页内部连续的线性地址映射到连续的物理地址;优点是内核可以对页指定存取权限,而不用对页中的所有线性地址指定

线性地址 = Directory(目录 10bit) + Table(页表 10bit) + offset(偏移量 12bit)

offset: 12bit的偏移量就是一个页的大小,表示连续的4096个线性地址为一页

扩展分页:页目录(10bit)+ offset (偏移量 22bit); 去掉了中间页表,每一页的大小为4MB
时间: 2024-12-22 06:23:39

深入理解Linux内核-内存寻址的相关文章

【笔记】深入理解Linux内核--内存寻址(一)

<深入理解Linux内核>中关于内存管理一共有三章,这是其中的一章,还有第八章,讨论内核怎样给自己分配主存,以及第九章,考虑怎样给进程分配线性地址. 内存地址 -- (P40) 以下三种地址是相对与8086处理器来说的. 逻辑地址(logical address) 包含在机器语言指令中用来指定一个操作数或一条指令的地址.比如下面反汇编代码中最左边的地址即逻辑地址. 1 40052d: 55 push %rbp 2 40052e: 48 89 e5 mov %rsp,%rbp 3 400531:

【深入理解Linux内核】《第二章 内存寻址》笔记 (2014-06-28 12:38)

2.1 内存地址 逻辑地址:段+偏移 线性地址(虚拟地址) 物理地址 2.2硬件中的分段 2.2.1 段选择符和段寄存器 15                                                3  2  1   0 ------------------------------------------------|                                                    |TI |RPL  ||         索引号 

【读书笔记::深入理解linux内核】内存寻址

我对linux高端内存的错误理解都是从这篇文章得来的,这篇文章里讲的 物理地址 = 逻辑地址 – 0xC0000000:这是内核地址空间的地址转换关系. 这句话瞬间让我惊呆了,根据我的CPU的知识,开启分页之后,任何寻址都要经过mmu的转换,也就是一个二级查表的过程(386) 难道内核很特殊,当mmu看到某个逻辑地址是内核传来的之后,就不查表了,直接减去0xC0000000,然后就传递给内存控制器了??? 我发现网上也有人和我问了同样的问题,看这个问题 这句话太让人费解了,让人费解到以至于要怀疑

Linux内核——内存管理

内存管理 页 内核把物理页作为内存管理的基本单位:内存管理单元(MMU,管理内存并把虚拟地址转换为物理地址)通常以页为单位进行处理.MMU以页大小为单位来管理系统中的页表.从虚拟内存的角度看,页就是最小单位. 32位系统:页大小4KB 64位系统:页大小8KB 在支持4KB页大小并有1GB物理内存的机器上,物理内存会被划分为262144个页.内核用 struct page 结构表示系统中的每个物理页. struct page { page_flags_t flags;   /* 表示页的状态,每

linux内核内存分配(二、struct slab和struct kmem_cache)

前一篇bloglinux内核内存分配(一.基本概念)主要是分析linux内核内存的分配和物理页分配函数接口.但是在实际的操作中,不一定所有内存申请都需要一个物理页,很多只是需要分配几K大小的内存就可以.所以就需要更小的内存分配函数.刚开始看这个有点不懂,不过懂了就很简单了.哈哈. slab思想 摘抄<深入linux设备驱动程序内核机制>的一段话:slab分配器的基本思想是,先利用页面分配器分配出单个或者一组连续的物理页面,然后在此基础上将整块页面分割成多个相等的小内存单元,以满足小内存空间分配

【深入理解Linux内核】《第一章 绪论》笔记

1.商用Unix操作系统包括: - AT&T公司开发的(System V Release 4) SVR4. - 加州伯克利分校发布的4.4BSD - Dec公司(现属于HP)的Digital Unix - IBM公司的AIX - HP公司的HP-UX - Sun公司的Solaris   - Apple公司的Mac OS X 所有商业版本都是SVR4或4.4BSD的变体,并且都趋向于遵循某些通用标准:如IEEE的POSIX(Portable Operating Systems based on U

20150514我读《深入理解linux内核》之虚拟文件系统笔记

20150514我读<深入理解linux内核>之虚拟文件系统笔记 2015-05-14 Lover雪儿 虚拟文件系统所隐含的思想就是把很多不同种类的文件系统的共同信息放入内核,其中有一个字段或者函数来支持Linux所支持的所有实际文件系统所提供的任何操作.对所调用的每个读.写或者其他函数,内核都能把他们替换成支持本地Linux文件系统.NTFS文件系统,或者文件所在的任何其他文件系统的实际函数. 虚拟文件系统可以称为虚拟文件系统转换,是一个内核软件层,用来处理与Unix标准文件系统相关的所有系

linux内核内存分配(三、虚拟内存管理)

在分析虚拟内存管理前要先看下linux内核内存的详细分配我开始就是困在这个地方,对内核内存的分类不是很清晰.我摘录其中的一段: 内核内存地址 =========================================================================================================== 在linux的内存管理中,用户使用0-3GB的地址空间,而内核只是用了3GB-4GB区间的地址空间,共1GB:非连 续空间的物理映射就位于3G

Linux内核-内存回收逻辑和算法(LRU)

Linux内核内存回收逻辑和算法(LRU) LRU 链表 在 Linux 中,操作系统对 LRU 的实现主要是基于一对双向链表:active 链表和 inactive 链表,这两个链表是 Linux 操作系统进行页面回收所依赖的关键数据结构,每个内存区域都存在一对这样的链表.顾名思义,那些经常被访问的处于活跃状态的页面会被放在 active 链表上,而那些虽然可能关联到一个或者多个进程,但是并不经常使用的页面则会被放到 inactive 链表上.页面会在这两个双向链表中移动,操作系统会根据页面的

【深入理解Linux内核架构】第3章:内存管理

3.1 概述 内存管理涵盖了许多领域: 内存中物理内存页的管理: 分配大块内存的伙伴系统: 分配小块内存的slab.slub.slob分配器: 分配非连续内存块的vmalloc机制: 进程的地址空间. Linux内核一般将虚拟地址空间划分为两部分:底部较大的部分用于用户进程,顶部则用于内核.虽然(在两个用户进程之间)上下文切换期间会改变下半部分,但是虚拟地址空间的内核部分中总是不变[这其实很好理解,内核是系统管理员,不能说因为每换一批游客,景区管理员都得跟着换一批?!].在IA-32系统上,虚拟