51 Nod 1678 lyk与gcd

1678 lyk与gcd

基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题

这天,lyk又和gcd杠上了。
它拥有一个n个数的数列,它想实现两种操作。

1:将  ai 改为b。
2:给定一个数i,求所有 gcd(i,j)=1 时的  aj  的总和。

Input

第一行两个数n,Q(1<=n,Q<=100000)。
接下来一行n个数表示ai(1<=ai<=10^4)。
接下来Q行,每行先读入一个数A(1<=A<=2)。
若A=1,表示第一种操作,紧接着两个数i和b。(1<=i<=n,1<=b<=10^4)。
若B=2,表示第二种操作,紧接着一个数i。(1<=i<=n)。

Output

对于每个询问输出一行表示答案。

Input示例

5 3
1 2 3 4 5
2 4
1 3 1
2 4

Output示例

9
7
 1 #include<vector>
 2 #include<cstring>
 3 #include<cstdio>
 4 using namespace std;
 5 #define N 100010
 6 #define LL long long
 7 vector<int>f[N],g[N];
 8 int a[N],n,ques;
 9 bool q[N];
10 long long sum[N];
11 void Prepare(){
12     int cnt=0;
13     for(int i=2;i<=n;i++){
14         if(!q[i])a[++cnt]=i;
15         for(int j=1;j<=cnt;j++){
16             if(a[j]*i>n) break;
17             q[a[j]*i]=1;
18             if(i % a[j] == 0) break;
19         }
20     }
21     for(int i=1;i<=cnt;i++){
22         for(int j=a[i];j<=n;j+=a[i]){
23             int w=f[j].size();
24             for(int k=0;k<w;k++){
25                 f[j].push_back(f[j][k]*a[i]);
26                 g[j].push_back(g[j][k]+1);
27             }
28             f[j].push_back(a[i]);
29             g[j].push_back(1);
30         }
31     }
32 }
33 int main()
34 {
35     LL ans;
36     scanf("%d%d",&n,&ques);
37     Prepare();
38     for(int i=1;i<=n;i++){
39         scanf("%d",&a[i]);sum[1]+=a[i];
40         for(int j=0;j<f[i].size();j++)
41             sum[f[i][j]]+=a[i];
42     }
43     int x,pos,value;
44     while(ques--){
45         scanf("%d",&x);
46         if(x==1){
47             scanf("%d%d",&pos,&value);
48             for(int i=0;i<f[pos].size();i++)
49                 sum[f[pos][i]]-=a[pos];
50             sum[1]-=a[pos];a[pos]=value;sum[1]+=a[pos];
51             for(int i=0;i<f[pos].size();i++)
52                 sum[f[pos][i]]+=a[pos];
53         }
54         else{
55             ans=sum[1];
56             scanf("%d",&pos);
57             for(int i=0;i<f[pos].size();i++)
58                 if(g[pos][i] & 1)ans-=sum[f[pos][i]];
59                 else ans+=sum[f[pos][i]];
60
61             printf("%lld\n",ans);
62         }
63     }
64     return 0;
65 }

比较基础的容斥题,我们预处理出每个i的所有素因子的组合,比如6={2,3,6},那么我们对于a[6]将它加入到sum[2],sum[3],sum[6]中,统计答案时用容斥思想加加减减就行了。

 
时间: 2024-12-20 20:56:37

51 Nod 1678 lyk与gcd的相关文章

1678 lyk与gcd

1678 lyk与gcd 基准时间限制:2 秒 空间限制:131072 KB 这天,lyk又和gcd杠上了.它拥有一个n个数的数列,它想实现两种操作. 1:将  ai 改为b.2:给定一个数i,求所有 gcd(i,j)=1 时的  aj  的总和. Input 第一行两个数n,Q(1<=n,Q<=100000). 接下来一行n个数表示ai(1<=ai<=10^4). 接下来Q行,每行先读入一个数A(1<=A<=2). 若A=1,表示第一种操作,紧接着两个数i和b.(1&

51nod 1678 lyk与gcd

这天,lyk又和gcd杠上了.它拥有一个n个数的数列,它想实现两种操作. 1:将  ai 改为b.2:给定一个数i,求所有 gcd(i,j)=1 时的  aj  的总和. Input 第一行两个数n,Q(1<=n,Q<=100000). 接下来一行n个数表示ai(1<=ai<=10^4). 接下来Q行,每行先读入一个数A(1<=A<=2). 若A=1,表示第一种操作,紧接着两个数i和b.(1<=i<=n,1<=b<=10^4). 若B=2,表示第

51nod lyk与gcd

1678 lyk与gcd 基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 这天,lyk又和gcd杠上了.它拥有一个n个数的数列,它想实现两种操作. 1:将  ai 改为b.2:给定一个数i,求所有 gcd(i,j)=1 时的  aj  的总和. Input 第一行两个数n,Q(1<=n,Q<=100000). 接下来一行n个数表示ai(1<=ai<=10^4). 接下来Q行,每行先读入一个数A(1<=A<=2). 若A=1,表示第一种

51 nod 1439 互质对(Moblus容斥)

1439 互质对 题目来源: CodeForces 基准时间限制:2 秒 空间限制:131072 KB 分值: 160 难度:6级算法题 有n个数字,a[1],a[2],…,a[n].有一个集合,刚开始集合为空.然后有一种操作每次向集合中加入一个数字或者删除一个数字.每次操作给出一个下标x(1 ≤ x ≤ n),如果a[x]已经在集合中,那么就删除a[x],否则就加入a[x]. 问每次操作之后集合中互质的数字有多少对. 注意,集合中可以有重复的数字,两个数字不同当且仅当他们的下标不同. 比如a[

51 nod 1188 最大公约数之和 V2

1188 最大公约数之和 V2 题目来源: UVA 基准时间限制:2 秒 空间限制:262144 KB 分值: 160 难度:6级算法题 给出一个数N,输出小于等于N的所有数,两两之间的最大公约数之和. 相当于计算这段程序(程序中的gcd(i,j)表示i与j的最大公约数): G=0; for(i=1;i<N;i++) for(j=i+1;j<=N;j++) { G+=gcd(i,j); } Input 第1行:1个数T,表示后面用作输入测试的数的数量.(1 <= T <= 5000

51 nod 1610 路径计数(Moblus+dp)

1610 路径计数 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 路径上所有边权的最大公约数定义为一条路径的值. 给定一个有向无环图.T次修改操作,每次修改一条边的边权,每次修改后输出有向无环图上路径的值为1的路径数量(对1,000,000,007取模). Input 第一行两个整数n和m,分别表示有向无环图上的点数和边数.(1<=n<=100,1<=m<=50,000) 第2~m+1行每行三个数x,y,z,表示有一条从x到y权值为z的边.(1

51 nod 1495 中国好区间

1495 中国好区间 基准时间限制:0.7 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 阿尔法在玩一个游戏,阿尔法给出了一个长度为n的序列,他认为,一段好的区间,它的长度是>=k的,且该区间的第k大的那个数,一定大于等于T.那么问题来了,阿尔法想知道有多少好的区间. 由于阿尔法的序列长度实在是太大了,无法在规定时间内读入. 他想了一个绝妙的方法. 读入a[0],b,c,p,则a[i]=(a[i-1]*b+c)mod p. 样例解释: a1~a5分别为47,135,247,3

51 nod 1766 树上的最远点对(线段树+lca)

1766 树上的最远点对 基准时间限制:3 秒 空间限制:524288 KB 分值: 80 难度:5级算法题 n个点被n-1条边连接成了一颗树,给出a~b和c~d两个区间,表示点的标号请你求出两个区间内各选一点之间的最大距离,即你需要求出max{dis(i,j) |a<=i<=b,c<=j<=d} (PS 建议使用读入优化) Input 第一行一个数字 n n<=100000. 第二行到第n行每行三个数字描述路的情况, x,y,z (1<=x,y<=n,1<

51 nod 1055 最长等差数列(dp)

1055 最长等差数列 基准时间限制:2 秒 空间限制:262144 KB 分值: 80 难度:5级算法题 N个不同的正整数,找出由这些数组成的最长的等差数列. 例如:1 3 5 6 8 9 10 12 13 14 等差子数列包括(仅包括两项的不列举) 1 3 5 1 5 9 13 3 6 9 12 3 8 13 5 9 13 6 8 10 12 14 其中6 8 10 12 14最长,长度为5. Input 第1行:N,N为正整数的数量(3 <= N <= 10000). 第2 - N+1行