k近邻算法(knn)的并行mpi实现

  C语言的串行版本已经前些篇博客给出,现在来讨论给算法的并行程序。该算法有很多种并行的方法,比较好的思路有以下几种。

  思路一:

  也是最容易想到的,就是将训练集在每台机器上都备份一份,然后将预测数据集平分给每台机器。这种并行方案就相当于这些机器单独计算一份预测集,简单来说有多少台机器,其加速比就是多少,由于不需要进程间的通信,所以是一种理想的并行方法。

  思路二:

  采用主从模式,让一个进程充当master,其他进程作为slave。master结点读取一条测试数据并广播给所有进程(当然也可以选择所有进程打开文件读取属于自己的那部分数据集),然后所有进程计算测试数据与它负责的那部分数据集的距离,并将所有距离及其分类的类别传回给master,然后master将收集的距离及其类别排序,统计前K个距离中的类别数,选择数目最多的类别的作为测试数据的结果。重复,直至所有测试数据计算完毕。此方法通信量较大,效果较差。

  改进的地方是,每个进程传回给master的不是所有距离和类别,而是其本地最小的前K个距离及其类别。下面的程序对比了这种思路及其改进的方法。

  思路三:

  采用流水线设计。下图一目了然,不赘述。

未完待续......

时间: 2024-12-19 00:29:23

k近邻算法(knn)的并行mpi实现的相关文章

K近邻算法-KNN

何谓K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,单从名字来猜想,可以简单粗暴的认为是:K个最近的邻居,当K=1时,算法便成了最近邻算法,即寻找最近的那个邻居.为何要找邻居?打个比方来说,假设你来到一个陌生的村庄,现在你要找到与你有着相似特征的人群融入他们,所谓入伙. 用官方的话来说,所谓K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居),这K个实例的多数属于某个类,就把该输入实例分

机器学习(四) 机器学习(四) 分类算法--K近邻算法 KNN (下)

六.网格搜索与 K 邻近算法中更多的超参数 七.数据归一化 Feature Scaling 解决方案:将所有的数据映射到同一尺度 八.scikit-learn 中的 Scaler preprocessing.py import numpy as np class StandardScaler: def __init__(self): self.mean_ = None self.scale_ = None def fit(self, X): """根据训练数据集X获得数据的均

Python实现K近邻算法<KNN>_分类器

收集数据 数据来源:http://archive.ics.uci.edu/ml/datasets/Haberman%27s+Survival 文本数据如下图所示: 31,65,4,1 33,58,10,1 33,60,0,1 34,59,0,2 34,66,9,2 这是关于乳腺癌已手术患者存活时间(寿命)的样本集,文本文件中共包含306个样本,样本包含的属性有: 1. 患者做手术时的年龄 opAge 2. 患者做手术的年份-1900 opYear,比如1970年做的手术,则opYear属性的值为

K近邻算法——KNN

KNN(K-Nearest Neighbor)算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性.该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别.所以比较特殊的是它不需要训练,易于理解,易于实现. 在KNN中,通过计算对象间距离来作为各个对象之间的相似性指标,在这里距离一般使用欧氏距离或曼哈顿距离: 整个KNN算法过程可以描述为:输入测试数据,将测试数据的特征与训练集中对应的特

最基础的分类算法-k近邻算法 kNN简介及Jupyter基础实现及Python实现

k-Nearest Neighbors简介 对于该图来说,x轴对应的是肿瘤的大小,y轴对应的是时间,蓝色样本表示恶性肿瘤,红色样本表示良性肿瘤,我们先假设k=3,这个k先不考虑怎么得到,先假设这个k是通过程序员经验得到. 假设此时来了一个新的样本绿色,我们需要预测该样本的数据是良性还是恶性肿瘤.我们从训练样本中选择k=3个离新绿色样本最近的样本,以选取的样本点自己的结果进行投票,如图投票结果为蓝色:红色=3:0,所以预测绿色样本可能也是恶性肿瘤. 再比如 此时来了一个新样本,我们选取离该样本最近

机器学习随笔01 - k近邻算法

算法名称: k近邻算法 (kNN: k-Nearest Neighbor) 问题提出: 根据已有对象的归类数据,给新对象(事物)归类. 核心思想: 将对象分解为特征,因为对象的特征决定了事对象的分类. 度量每个特征的程度,将其数字化. 所有特征值构成元组,作为该对象的坐标. 计算待检测对象和所有已知对象的距离,选择距离最接近的k个已知对象 (k近邻中的k来源于此). 这k个对象中出现次数最多的分类就是待检测对象的分类. 重要前提: 需要有一批已经正确归类了的对象存在.也就是通常说的训练数据. 重

基本分类方法——KNN(K近邻)算法

在这篇文章 http://www.cnblogs.com/charlesblc/p/6193867.html 讲SVM的过程中,提到了KNN算法.有点熟悉,上网一查,居然就是K近邻算法,机器学习的入门算法. 参考内容如下:http://www.cnblogs.com/charlesblc/p/6193867.html 1.kNN算法又称为k近邻分类(k-nearest neighbor classification)算法. 最简单平凡的分类器也许是那种死记硬背式的分类器,记住所有的训练数据,对于

k近邻算法(knn)与k-means算法的对比

k近邻算法(knn)是一种基本的分类与回归的算法,k-means是一种基本的聚类方法. k近邻算法(knn) 基本思路:如果一个样本在特征空间的k个最相似(即特征空间最邻近)的样本大多数属于某一类,则该样本也属于这一类. 影响因素: k值的选择.k的值小,则近似误差小,估计误差大:k的值大,则近似误差大,估计误差小.(近似误差即算法在训练集上的误差,估计误差即算法在测试集上的误差.近似误差小,会出现过拟合的现象,即模型在训练集上预测误差小,在未知的测试集上则表现差,此时模型并非最优模型:估计误差

第2章 K近邻算法实战(KNN)

1.准备:使用Python导入数据 1.创建kNN.py文件,并在其中增加下面的代码: from numpy import * #导入科学计算包 import operator #运算符模块,k近邻算法执行排序操作时将使用这个模块提供的函数 def createDataSet(): group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]]) labels=['A','A','B','B'] return group,labels ##print(create