数论之旅4---欧拉函数的证明及代码实现(我会证明都是骗人的╮( ̄▽ ̄)╭)

欧拉函数,用φ(n)表示

欧拉函数是求小于n的数中与n互质的数的数目

辣么,怎么求哩?~(~o ̄▽ ̄)~o

可以先在1到n-1中找到与n不互质的数,然后把他们减掉

比如φ(12)

把12质因数分解,12=2*2*3,其实就是得到了2和3两个质因数

然后把2的倍数和3的倍数都删掉

2的倍数:2,4,6,8,10,12

3的倍数:3,6,9,12

本来想直接用12 - 12/2 - 12/3

但是6和12重复减了

所以还要把即是2的倍数又是3的倍数的数加回来 (>﹏<)

所以这样写12 - 12/2 - 12/3 + 12/(2*3)

这叫什么,这叫容斥啊,容斥定理听过吧

比如φ(30),30 = 2*3*5

所以φ(30) = 30 - 30/2 - 30/3 - 30/5 + 30/(2*3) + 30/(2*5) + 30/(3*5) - 30/(2*3*5)

但是容斥写起来好麻烦( ̄. ̄)

有一种简单的方法

φ(12)   =   12*(1 - 1/2)*(1 - 1/3)                 =   12*(1 - 1/2 - 1/3 + 1/6)

φ(30)   =   30*(1 - 1/2)*(1 - 1/3)*(1 - 1/5)   =   30*(1 - 1/2 - 1/3 - 1/5 + 1/6 + 1/10 + 1/15 - 1/30)

你看( •?∀•? ),拆开后发现它帮你自动帮你容斥好

所以φ(30)的计算方法就是先找30的质因数

分别是2,3,5

然后用30* 1/2 * 2/3 * 4/5就搞定了

代码如下:

 1 //欧拉函数
 2 int phi(int x){
 3     int ans = x;
 4     for(int i = 2; i*i <= x; i++)
 5         if(x % i == 0){
 6             ans = ans / i * (i-1);
 7             while(x % i == 0) x /= i;
 8         }
 9     if(x > 1) ans = ans / x * (x-1);
10     return ans;
11 }

(phi就是φ的读音)

机智的代码,机智的我(??`ω´?)

这个的复杂度是O(√n),如果要你求n个数的欧拉函数,复杂度是O(n√n),这也太慢了

有更快的方法,线筛欧拉函数

需要用到如下性质

p为质数

1. phi(p)=p-1   因为质数p除了1以外的因数只有p,故1至p的整数只有p与p不互质

2. 如果i mod p = 0, 那么 phi(i * p)=phi(i) * p         (我不会证明)

3.若i mod p ≠0,  那么 phi( i * p )=phi(i) * ( p-1 )   (我不会证明)

(所以我说我会证明都是骗人的╮( ̄▽ ̄)╭)

代码如下:

 1 #include<cstdio>
 2 using namespace std;
 3 const int M = 1e6+10 ;
 4 int phi[M] , prime[M];
 5 int tot;//tot计数,表示prime[M]中有多少质数
 6 int Euler () {
 7     for (int i = 2 ; i < M ; i ++) {
 8         if (!phi[i]) {
 9             phi[i] = i-1 ;
10             prime[ ++tot ] = i ;
11         }
12         for (int j = 1 ; j <= tot && 1ll*i*prime[j] < M ; j ++) {
13             if (i % prime[j]) phi[i * prime[j]] = phi[i] * (prime[j]-1) ;
14             else {
15                 phi[i * prime[j] ] = phi[i] * prime[j] ;
16                 break ;
17             }
18         }
19     }
20 }
21
22 int main () {
23     Euler () ;
24 }

(Euler就是欧拉)

机智的代码,机智的我(??`ω´?)

时间: 2024-10-16 01:40:13

数论之旅4---欧拉函数的证明及代码实现(我会证明都是骗人的╮( ̄▽ ̄)╭)的相关文章

POJ 3358 Period of an Infinite Binary Expansion( 数论好题 + 欧拉定理 + 欧拉函数 )

POJ 3358 Period of an Infinite Binary Expansion( 数论好题 + 欧拉定理 + 欧拉函数 ) #include <cstdio> #include <cstring> #include <algorithm> #include <algorithm> using namespace std; typedef long long LL; LL fac[ 100000 ], pf; LL gcd( LL a, LL

欧拉函数一些定理的证明

参考书籍:<ACM-ICPC程序设计系列--数论及应用> 欧拉函数φ(n)指不超过n且与n互质的正整数的个数,其中n是一个正整数. 欧拉函数的性质:它在整数n上的值等于对n进行素因子分解后,所有的素数上的欧拉函数之积. 定义: 1.定义在所有正整数上的函数称为算数函数   2.算法函数f如果满足对任意两个互质的正整数n和m,均有f(mn)=f(n)f(m),就称为积性函数.如果对任意的两个正整数n和m,均有f(mn)=f(m)f(n),就称为完全积性函数. (欧拉函数就是一个积性函数证明:ht

hdu2824 The Euler function(欧拉函数个数)

转载请注明出处:http://blog.csdn.net/u012860063 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2824 欧拉函数性质: 1:(百科):http://baike.baidu.com/link?url=r-yneKCCyS9N6bhbQCqiZX0V2OCYq9r7iHSzHTSs03H7qRvu1OfUzlOxfVEs2PmR 2:http://www.cppblog.com/doer-xee/archive/2009

POJ 2154 Color (ploya欧拉函数)

ploya定理,然后公式利用欧拉函数优化,gcd必然是因子,这样只要枚举因子,每个因子利用欧拉函数计算出现次数 代码: #include <cstdio> #include <cstring> #include <algorithm> using namespace std; int t, n, p; int pow_mod(int x, int k) { x %= p; int ans = 1; while (k) { if (k&1) ans = ans *

poj2409 &amp; 2154 polya计数+欧拉函数优化

这两个题都是项链珠子的染色问题 也是polya定理的最基本和最经典的应用之一 题目大意: 用m种颜色染n个珠子构成的项链,问最终形成的等价类有多少种 项链是一个环.通过旋转或者镜像对称都可以得到置换 旋转可以旋转 i=[1,n]次..画图可以看出循环节有gcd(n,i)个 镜像对称的置换画个图也是很容易找的 然后通过polya定理就可以容易的求出等价类的种数了 2409就是这样一个裸题,以下为ac代码 #include <iostream> #include <stdio.h> #

HDU 4002 Find the maximum(数论-欧拉函数)

Find the maximum Problem Description Euler's Totient function, φ (n) [sometimes called the phi function], is used to determine the number of numbers less than n which are relatively prime to n . For example, as 1, 2, 4, 5, 7, and 8, are all less than

数论学习_欧拉函数

在数论,对正整数n,欧拉函数是小于n的正整数中与n互质的数的数目(φ(1)=1).此函数以其首名研究者欧拉命名(Euler'so totient function),它又称为Euler's totient function.φ函数.欧拉商数等. 例如φ(8)=4,因为1,3,5,7均和8互质. 从欧拉函数引伸出来在环论方面的事实和拉格朗日定理构成了欧拉定理的证明. 求解小于n且与n互素的整数个数.给出正整数n的唯一分解式: n=p1a1p2a2p3a3......pkak,求1,2,3.....

hihoCoder 1298 : 数论五&#183;欧拉函数

#1298 : 数论五·欧拉函数 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho有时候会用密码写信来互相联系,他们用了一个很大的数当做密钥.小Hi和小Ho约定了一个区间[L,R],每次小Hi和小Ho会选择其中的一个数作为密钥. 小Hi:小Ho,这次我们选[L,R]中的一个数K. 小Ho:恩,小Hi,这个K是多少啊? 小Hi:这个K嘛,不如这一次小Ho你自己想办法算一算怎么样?我这次选择的K满足这样一个条件: 假设φ(n)表示1..n-1中与n互质的数

数论快速入门(同余、扩展欧几里德、中国剩余定理、大素数测定和整数分解、素数三种筛法、欧拉函数以及各种模板)

数学渣渣愉快的玩了一把数论,来总结一下几种常用的算法入门,不过鶸也是刚刚入门, 所以也只是粗略的记录下原理,贴下模板,以及入门题目(感受下模板怎么用的) (PS:文中蓝色字体都可以点进去查看百度原文) 附赠数论入门训练专题:点我打开专题(题目顺序基本正常,用以配套数论入门) 一.同余定理 简单粗暴的说就是:若 a-b == m 那么 a%m == b%m 这个模运算性质一眼看出...直接上入门水题: Reduced ID Numbers 附AC代码(这个也没啥模板....知道就好) #inclu

欧拉函数性质与求法 [数论][欧拉函数]

n的欧拉函数值用符号φ(n)表示 欧拉函数的定义是,对于一个正整数n,小于n且与n互质的数的数目(包括1,特殊地,φ(1)=1 ). 设p1,p2,p3,...,pr为n的全部r个质因数,则有φ(n)=n*(1-1/p1)*(1-1/p2)*(1-1/p3)*(1-1/p4)…..(1-1/pr). 显然,用这个方法来计算单个欧拉函数是可以求解的. 附上代码: 1 int get_phi(int x){ 2 int re=x; 3 for(int i=2;i*i<=x;i++) 4 if(x%i