杜教BM模板

#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod=1000000007;
ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
// head

namespace linear_seq {
    const int N=10010;
    ll res[N],base[N],_c[N],_md[N];

    vector<int> Md;
    void mul(ll *a,ll *b,int k) {
        rep(i,0,k+k) _c[i]=0;
        rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
        for (int i=k+k-1;i>=k;i--) if (_c[i])
            rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
        rep(i,0,k) a[i]=_c[i];
    }
    int solve(ll n,VI a,VI b) { // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
//        printf("SIZE %d\n",SZ(b));
        ll ans=0,pnt=0;
        int k=SZ(a);
        assert(SZ(a)==SZ(b));
        rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1;
        Md.clear();
        rep(i,0,k) if (_md[i]!=0) Md.push_back(i);
        rep(i,0,k) res[i]=base[i]=0;
        res[0]=1;
        while ((1ll<<pnt)<=n) pnt++;
        for (int p=pnt;p>=0;p--) {
            mul(res,res,k);
            if ((n>>p)&1) {
                for (int i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0;
                rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
            }
        }
        rep(i,0,k) ans=(ans+res[i]*b[i])%mod;
        if (ans<0) ans+=mod;
        return ans;
    }
    VI BM(VI s) {
        VI C(1,1),B(1,1);
        int L=0,m=1,b=1;
        rep(n,0,SZ(s)) {
            ll d=0;
            rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod;
            if (d==0) ++m;
            else if (2*L<=n) {
                VI T=C;
                ll c=mod-d*powmod(b,mod-2)%mod;
                while (SZ(C)<SZ(B)+m) C.pb(0);
                rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
                L=n+1-L; B=T; b=d; m=1;
            } else {
                ll c=mod-d*powmod(b,mod-2)%mod;
                while (SZ(C)<SZ(B)+m) C.pb(0);
                rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
                ++m;
            }
        }
        return C;
    }
    int gao(VI a,ll n) {
        VI c=BM(a);
        c.erase(c.begin());
        rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod;
        return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
    }
};

int a[2020][2020];
long long det(int n) {
    long long ans = 1;
    for (int i = 0; i < n; i++) {
        for (int j = i + 1; j < n; j++) {
            while (a[j][i] != 0) {
                int u = a[i][i] / a[j][i];
                for (int k = 0; k < n; k++) {
                    int t = (a[i][k] - (long long)a[j][k] * u % mod + mod) % mod;
                    a[i][k] = a[j][k];
                    a[j][k] = t;
                }
                ans = -ans;
            }
        }
        ans = ans * a[i][i] % mod;
    }
    if (ans < 0) {
        ans += mod;
    }
    return ans;
}

long long work(int k, int n) {
//  assert(n > 2 * k + 1);
    memset(a, 0, sizeof a);
    for (int i = 0; i < n; i++) {
        a[i][i] = k;
        for (int j = 1; j <= k; j++) {
            a[i][(i + j) % n] = -1;
        }
    }
/*
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            printf("%d%c", a[i][j], j == n - 1 ? ‘\n‘ : ‘ ‘);
        }
    }
*/
    int t = 1;
    for (int i = 1; i < k; i++) {
        t = t * i % mod;
    }
    return (long long)det(n - 1) * powmod(t, n) % mod;
}

void maketable() {
    printf("{\n");
    for (int k = 1; k <= 5; k++) {
        if (k > 1) {
            printf(",\n");
        }
        printf("{\n");
        for (int i = 2 * k + 1; i <= 350; i++) {
            if (i > 2 * k + 1) {
                printf(",");
            }
            printf("%lld", work(k, i));
        }
        printf("}\n");
    }
    printf("}\n");
}
int main() {
    int k;
    long long n;
//  maketable();
    cin >> k >> n;
//  k = 5;
//  printf("%d\n", work(k, n));
    vector<int> a;
    for (int i = 2 * k + 1; i <= (1 << k) + 2 * k + 1; i++) {
//      printf("%d %d\n", i, work(k, i));
        a.push_back(work(k, i));
    }
//  cout << linear_seq::gao(b[k], n - (2 * k + 1)) << endl;
    cout << linear_seq::gao(a, n - (2 * k + 1)) << endl;
    return 0;
}

//BM

牛客第九场欧拉回路

原文地址:https://www.cnblogs.com/Aragaki/p/9489566.html

时间: 2024-11-06 09:51:31

杜教BM模板的相关文章

HDU6198 number number number(杜教BM模板)

给出一个数k,问用k个斐波那契数相加,得不到的数最小是几. #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <vector> #include <string> #include <map> #include <set> #include <cassert> #include<

ACM-ICPC 2018 焦作赛区网络预赛 L:Poor God Water(杜教BM)

有N个小时,有三种食物(用a ,b ,c代替好了),每个小时要吃一种食物,要求任意连续三个小时不能出现aaa,bbb,ccc,abc,cba,bab,bcb(假设b为巧克力) 的方案数 先用矩阵打表 先对两个数统计有1.aa 2.bb 3.cc 4.ab 5.ba 6.ac 7.ca 8.bc 9.cb 在添加一个数,则会有 若ba后面只能添加a或c 即形成新的两个字母组合1.aa 6.ac 即5可以产生1和6(以下代码不是照上面数字敲的) 以此类推即可产生新的a数组 ll a[2][15];

杜教BM

#include <algorithm> #include <iterator> #include <iostream> #include <cstring> #include <iomanip> #include <cstdlib> #include <cstdio> #include <string> #include <vector> #include <bitset> #incl

杜教BM递推板子

Berlekamp-Massey 算法用于求解常系数线性递推式 #include<bits/stdc++.h> typedef std::vector<int> VI; typedef long long ll; typedef std::pair<int, int> PII; const ll mod = 1000000007; ll powmod(ll a, ll b) { ll res = 1; a %= mod; assert(b >= 0); for(;

杜教筛模板

1 2 #include<iostream> 3 #include<cstdio> 4 #include<cstring> 5 #include<algorithm> 6 #include<map> 7 #define ll long long 8 #define N 2000005 9 using namespace std; 10 const int now=1<<20; 11 ll phi[N]; 12 int pr[N],mi

杜教筛 模板

转自: http://blog.leanote.com/post/totziens/%E8%8E%AB%E6%AF%94%E4%B9%8C%E6%96%AF%E5%8F%8D%E6%BC%94%E4%B8%8E%E6%9D%9C%E6%95%99%E7%AD%9B 1. 求$\sum\limits_{i=1}^n\mu(i),n\leqslant 10^{11}$直接求不好求,但是我们有$\sum\limits_{i=1}^n\sum\limits_{d|i}\mu(d)=1$化一下蛤:$\su

luoguP4213 [模板]杜教筛

https://www.luogu.org/problemnew/show/P4213 同 bzoj3944 考虑用杜教筛求出莫比乌斯函数前缀和,第二问随便过,第一问用莫比乌斯反演来做,中间的整除分块里的莫比乌斯前缀和刚好用第二问来做 杜教筛的时候先线性筛出前 N 个数的莫比乌斯函数前缀和,其余的用 map 记忆化搜索,实测 N 取 3670000 最佳(其实我只测了3次) #include <bits/stdc++.h> using namespace std; typedef unsign

P4213 【模板】杜教筛(Sum)

\(\color{#0066ff}{题 目 描 述}\) 给定一个正整数\(N(N\le2^{31}-1)\) 求 \(\begin{aligned} ans_1=\sum_{i=1}^n\varphi(i) \end{aligned}\) \(\begin{aligned} ans_2=\sum_{i=1}^n \mu(i) \end{aligned}\) \(\color{#0066ff}{输 入 格 式}\) 一共T+1行 第1行为数据组数T(T<=10) 第2~T+1行每行一个非负整数N

【模板】杜教筛(Sum)

传送门 Description 给定一个正整数\(N(N\le2^{31}-1)\) 求 \[ans1=\sum_{i=1}^n \varphi(i)\] \[ans_2=\sum_{i=1}^n \mu(i)\] Solution 总算是写了一个不会\(TLE\)的杜教筛,不想用\(map\),因此上了一个很丑的\(Hash\)-- Code #include<bits/stdc++.h> #define ll long long #define max(a,b) ((a)>(b)?(