hash算法学习

1. Hash是什么,它的作用
先举个例子。我们每个活在世上的人,为了能够参与各种社会活动,都需要一个用于识别自己的标志。也许你觉得名字或是身份证就足以代表你这个人,但是这种代表性非常脆弱,因为重名的人很多,身份证也可以伪造。最可靠的办法是把一个人的所有基因序列记录下来用来代表这个人,但显然,这样做并不实际。而指纹看上去是一种不错的选择,虽然一些专业组织仍然可以模拟某个人的指纹,但这种代价实在太高了。
而对于在互联网世界里传送的文件来说,如何标志一个文件的身份同样重要。比如说我们下载一个文件,文件的下载过程中会经过很多网络服务器、路由器的中转,如何保证这个文件就是我们所需要的呢?我们不可能去一一检测这个文件的每个字节,也不能简单地利用文件名、文件大小这些极容易伪装的信息,这时候,我们就需要一种指纹一样的标志来检查文件的可靠性,这种指纹就是我们现在所用的Hash算法(也叫散列算法)。
散列算法(Hash Algorithm),又称哈希算法,杂凑算法,是一种从任意文件中创造小的数字「指纹」的方法。与指纹一样,散列算法就是一种以较短的信息来保证文件唯一性的标志,这种标志与文件的每一个字节都相关,而且难以找到逆向规律。因此,当原有文件发生改变时,其标志值也会发生改变,从而告诉文件使用者当前的文件已经不是你所需求的文件。
这种标志有何意义呢?之前文件下载过程就是一个很好的例子,事实上,现在大部分的网络部署和版本控制工具都在使用散列算法来保证文件可靠性。而另一方面,我们在进行文件系统同步、备份等工具时,使用散列算法来标志文件唯一性能帮助我们减少系统开销,这一点在很多云存储服务器中都有应用。

当然,作为一种指纹,散列算法最重要的用途在于给证书、文档、密码等高安全系数的内容添加加密保护。这一方面的用途主要是得益于散列算法的不可逆性,这种不可逆性体现在,你不仅不可能根据一段通过散列算法得到的指纹来获得原有的文件,也不可能简单地创造一个文件并让它的指纹与一段目标指纹相一致。散列算法的这种不可逆性维持着很多安全框架的运营,而这也将是本文讨论的重点。
2. Hash算法有什么特点
一个优秀的 hash 算法,将能实现:
正向快速:给定明文和 hash 算法,在有限时间和有限资源内能计算出 hash 值。
逆向困难:给定(若干) hash 值,在有限时间内很难(基本不可能)逆推出明文。
输入敏感:原始输入信息修改一点信息,产生的 hash 值看起来应该都有很大不同。
冲突避免:很难找到两段内容不同的明文,使得它们的 hash 值一致(发生冲突)。即对于任意两个不同的数据块,其hash值相同的可能性极小;对于一个给定的数据块,找到和它hash值相同的数据块极为困难。
但在不同的使用场景中,如数据结构和安全领域里,其中对某一些特点会有所侧重。
2.1 Hash在管理数据结构中的应用
在用到hash进行管理的数据结构中,就对速度比较重视,对抗碰撞不太看中,只要保证hash均匀分布就可以。比如hashmap,hash值(key)存在的目的是加速键值对的查找,key的作用是为了将元素适当地放在各个桶里,对于抗碰撞的要求没有那么高。换句话说,hash出来的key,只要保证value大致均匀的放在不同的桶里就可以了。但整个算法的set性能,直接与hash值产生的速度有关,所以这时候的hash值的产生速度就尤为重要,以JDK中的String.hashCode()方法为例:
public int hashCode() {
int h = hash;
//hash default value : 0
if (h == 0 && value.length > 0) {
//value : char storage
char val[] = value;
for (int i = 0; i < value.length; i++) {
h = 31 * h + val[i];
}
hash = h;
}
return h;
}

很简洁的一个乘加迭代运算,在不少的hash算法中,使用的是异或+加法进行迭代,速度和前者差不多。
2.1 Hash在在密码学中的应用
在密码学中,hash算法的作用主要是用于消息摘要和签名,换句话说,它主要用于对整个消息的完整性进行校验。举个例子,我们登陆知乎的时候都需要输入密码,那么知乎如果明文保存这个密码,那么黑客就很容易窃取大家的密码来登陆,特别不安全。那么知乎就想到了一个方法,使用hash算法生成一个密码的签名,知乎后台只保存这个签名值。由于hash算法是不可逆的,那么黑客即便得到这个签名,也丝毫没有用处;而如果你在网站登陆界面上输入你的密码,那么知乎后台就会重新计算一下这个hash值,与网站中储存的原hash值进行比对,如果相同,证明你拥有这个账户的密码,那么就会允许你登陆。银行也是如此,银行是万万不敢保存用户密码的原文的,只会保存密码的hash值而而已。在这些应用场景里,对于抗碰撞和抗篡改能力要求极高,对速度的要求在其次。一个设计良好的hash算法,其抗碰撞能力是很高的。以MD5为例,其输出长度为128位,设计预期碰撞概率为,这是一个极小极小的数字——而即便是在MD5被王小云教授破解之后,其碰撞概率上限也高达,也就是说,至少需要找次才能有1/2的概率来找到一个与目标文件相同的hash值。而对于两个相似的字符串,MD5加密结果如下:
MD5("version1") = "966634ebf2fc135707d6753692bf4b1e";
MD5("version2") = "2e0e95285f08a07dea17e7ee111b21c8";
1
2
可以看到仅仅一个比特位的改变,二者的MD5值就天差地别了
ps : 其实把hash算法当成是一种加密算法,这是不准确的,我们知道加密总是相对于解密而言的,没有解密何谈加密呢,HASH的设计以无法解为目的的。并且如果我们不附加一个随机的salt值,HASH口令是很容易被字典攻击入侵的。
3. Hash算法是如何实现的?
密码学和信息安全发展到现在,各种加密算法和散列算法已经不是只言片语所能解释得了的。在这里我们仅提供几个简单的概念供大家参考。
作为散列算法,首要的功能就是要使用一种算法把原有的体积很大的文件信息用若干个字符来记录,还要保证每一个字节都会对最终结果产生影响。那么大家也许已经想到了,求模这种算法就能满足我们的需要。
事实上,求模算法作为一种不可逆的计算方法,已经成为了整个现代密码学的根基。只要是涉及到计算机安全和加密的领域,都会有模计算的身影。散列算法也并不例外,一种最原始的散列算法就是单纯地选择一个数进行模运算,比如以下程序。
# 构造散列函数
def hash(a):
return a % 8

# 测试散列函数功能
print(hash(233))
print(hash(234))
print(hash(235))

# 输出结果
- 1
- 2
- 3

很显然,上述的程序完成了一个散列算法所应当实现的初级目标:用较少的文本量代表很长的内容(求模之后的数字肯定小于8)。但也许你已经注意到了,单纯使用求模算法计算之后的结果带有明显的规律性,这种规律将导致算法将能难保证不可逆性。所以我们将使用另外一种手段,那就是异或。
再来看下面一段程序,我们在散列函数中加入一个异或过程。
# 构造散列函数
def hash(a):
return (a % 8) ^ 5

# 测试散列函数功能
print(hash(233))
print(hash(234))
print(hash(235))

# 输出结果
- 4
- 7
- 6

很明显的,加入一层异或过程之后,计算之后的结果规律性就不是那么明显了。
当然,大家也许会觉得这样的算法依旧很不安全,如果用户使用连续变化的一系列文本与计算结果相比对,就很有可能找到算法所包含的规律。但是我们还有其他的办法。比如在进行计算之前对原始文本进行修改,或是加入额外的运算过程(如移位),比如以下程序。
# 构造散列函数
def hash(a):
return (a + 2 + (a << 1)) % 8 ^ 5

# 测试散列函数功能
print(hash(233))
print(hash(234))
print(hash(235))

# 输出结果
- 0
- 5
- 6

这样处理得到的散列算法就很难发现其内部规律,也就是说,我们并不能很轻易地给出一个数,让它经过上述散列函数运算之后的结果等于4——除非我们去穷举测试。
上面的算法是不是很简单?事实上,下面我们即将介绍的常用算法MD5和SHA1,其本质算法就是这么简单,只不过会加入更多的循环和计算,来加强散列函数的可靠性。
4. Hash有哪些流行的算法
目前流行的 Hash 算法包括 MD5、SHA-1 和 SHA-2。
MD4(RFC 1320)是 MIT 的 Ronald L. Rivest 在 1990 年设计的,MD 是 Message Digest 的缩写。其输出为 128 位。MD4 已证明不够安全。
MD5(RFC 1321)是 Rivest 于1991年对 MD4 的改进版本。它对输入仍以 512 位分组,其输出是 128 位。MD5 比 MD4 复杂,并且计算速度要慢一点,更安全一些。MD5 已被证明不具备”强抗碰撞性”。
SHA (Secure Hash Algorithm)是一个 Hash 函数族,由 NIST(National Institute of Standards and Technology)于 1993 年发布第一个算法。目前知名的 SHA-1 在 1995 年面世,它的输出为长度 160 位的 hash 值,因此抗穷举性更好。SHA-1 设计时基于和 MD4 相同原理,并且模仿了该算法。SHA-1 已被证明不具”强抗碰撞性”。
为了提高安全性,NIST 还设计出了 SHA-224、SHA-256、SHA-384,和 SHA-512 算法(统称为 SHA-2),跟 SHA-1 算法原理类似。SHA-3 相关算法也已被提出。
可以看出,上面这几种流行的算法,它们最重要的一点区别就是”强抗碰撞性”。
5. 那么,何谓Hash算法的「碰撞」?
你可能已经发现了,在实现算法章节的第一个例子,我们尝试的散列算法得到的值一定是一个不大于8的自然数,因此,如果我们随便拿9个数去计算,肯定至少会得到两个相同的值,我们把这种情况就叫做散列算法的「碰撞」(Collision)。
这很容易理解,因为作为一种可用的散列算法,其位数一定是有限的,也就是说它能记录的文件是有限的——而文件数量是无限的,两个文件指纹发生碰撞的概率永远不会是零。
但这并不意味着散列算法就不能用了,因为凡事都要考虑代价,买光所有彩票去中一次头奖是毫无意义的。现代散列算法所存在的理由就是,它的不可逆性能在较大概率上得到实现,也就是说,发现碰撞的概率很小,这种碰撞能被利用的概率更小。
随意找到一组碰撞是有可能的,只要穷举就可以。散列算法得到的指纹位数是有限的,比如MD5算法指纹字长为128位,意味着只要我们穷举21282128次,就肯定能得到一组碰撞——当然,这个时间代价是难以想象的,而更重要的是,仅仅找到一组碰撞并没有什么实际意义。更有意义的是,如果我们已经有了一组指纹,能否找到一个原始文件,让它的散列计算结果等于这组指纹。如果这一点被实现,我们就可以很容易地篡改和伪造网络证书、密码等关键信息。
你也许已经听过MD5已经被破解的新闻——但事实上,即便是MD5这种已经过时的散列算法,也很难实现逆向运算。我们现在更多的还是依赖于海量字典来进行尝试,也就是通过已经知道的大量的文件——指纹对应关系,搜索某个指纹所对应的文件是否在数据库里存在。
5.1 MD5的实际碰撞案例
下面让我们来看看一个真实的碰撞案例。我们之所以说MD5过时,是因为它在某些时候已经很难表现出散列算法的某些优势——比如在应对文件的微小修改时,散列算法得到的指纹结果应当有显著的不同,而下面的程序说明了MD5并不能实现这一点。
import hashlib

# 两段HEX字节串,注意它们有细微差别
a = bytearray.fromhex("0e306561559aa787d00bc6f70bbdfe3404cf03659e704f8534c00ffb659c4c8740cc942feb2da115a3f4155cbb8607497386656d7d1f34a42059d78f5a8dd1ef")

b = bytearray.fromhex("0e306561559aa787d00bc6f70bbdfe3404cf03659e744f8534c00ffb659c4c8740cc942feb2da115a3f415dcbb8607497386656d7d1f34a42059d78f5a8dd1ef")

# 输出MD5,它们的结果一致
print(hashlib.md5(a).hexdigest())
print(hashlib.md5(b).hexdigest())

### a和b输出结果都为:
cee9a457e790cf20d4bdaa6d69f01e41
cee9a457e790cf20d4bdaa6d69f01e41
而诸如此类的碰撞案例还有很多,上面只是原始文件相对较小的一个例子。事实上现在我们用智能手机只要数秒就能找到MD5的一个碰撞案例,因此,MD5在数年前就已经不被推荐作为应用中的散列算法方案,取代它的是SHA家族算法,也就是安全散列算法(Secure Hash Algorithm,缩写为SHA)。
5.2 SHA家族算法以及SHA1碰撞
安全散列算法与MD5算法本质上的算法是类似的,但安全性要领先很多——这种领先型更多的表现在碰撞攻击的时间开销更大,当然相对应的计算时间也会慢一点。
SHA家族算法的种类很多,有SHA0、SHA1、SHA256、SHA384等等,它们的计算方式和计算速度都有差别。其中SHA1是现在用途最广泛的一种算法。包括GitHub在内的众多版本控制工具以及各种云同步服务都是用SHA1来区别文件,很多安全证书或是签名也使用SHA1来保证唯一性。长期以来,人们都认为SHA1是十分安全的,至少大家还没有找到一次碰撞案例。
但这一事实在2017年2月破灭了。CWI和Google的研究人员们成功找到了一例SHA1碰撞,而且很厉害的是,发生碰撞的是两个真实的、可阅读的PDF文件。这两个PDF文件内容不相同,但SHA1值完全一样。(对于这件事的影响范围及讨论,可参考知乎上的讨论:如何评价 2 月 23 日谷歌宣布实现了 SHA-1 碰撞?)
所以,对于一些大的商业机构来说, MD5 和 SHA1 已经不够安全,推荐至少使用 SHA2-256 算法。
6. Hash在Java中的应用
6.1 HashMap的复杂度
在介绍HashMap的实现之前,先考虑一下,HashMap与ArrayList和LinkedList在数据复杂度上有什么区别。下图是他们的性能对比图:
获取 查找 添加/删除 空间
ArrayList O(1) O(1) O(N) O(N)
LinkedList O(N) O(N) O(1) O(N)
HashMap O(N/Bucket_size) O(N/Bucket_size) O(N/Bucket_size) O(N)
可以看出HashMap整体上性能都非常不错,但是不稳定,为O(N/Buckets),N就是以数组中没有发生碰撞的元素,Buckets是因碰撞产生的链表。
注:发生碰撞实际上是非常稀少的,所以N/Bucket_size约等于1
HashMap是对Array与Link的折衷处理,Array与Link可以说是两个速度方向的极端,Array注重于数据的获取,而处理修改(添加/删除)的效率非常低;Link由于是每个对象都保持着下一个对象的指针,查找某个数据需要遍历之前所有的数据,所以效率比较低,而在修改操作中比较快。
6.2 HashMap的实现
本文以JDK8的API实现进行分析
6.2.1 对key进行Hash计算
在JDK8中,由于使用了红黑树来处理大的链表开销,所以hash这边可以更加省力了,只用计算hashCode并移动到低位就可以了。
static final int hash(Object key) {
int h;
//计算hashCode,并无符号移动到低位
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

举个例子: 363771819^(363771819 >>> 16)
0001 0101 1010 1110 1011 0111 1010 1011(363771819)
0000 0000 0000 0000 0001 0101 1010 1110(5550) XOR
--------------------------------------- =
0001 0101 1010 1110 1010 0010 0000 0101(363766277)

这样做可以实现了高地位更加均匀地混到一起。
下面给出在Java中几个常用的哈希码(hashCode)的算法。
String类的hashCode. 根据String类包含的字符串的内容,根据一种特殊算法返回哈希码,只要字符串的内容相同,返回的哈希码也相同。
Integer等包装类,返回的哈希码就是Integer对象里所包含的那个整数的数值,例如Integer i1=new Integer(100), i1.hashCode的值就是100 。由此可见,2个一样大小的Integer对象,返回的哈希码也一样。
int,char这样的基础类,它们不需要hashCode,如果需要存储时,将进行自动装箱操作,计算方法同上。
6.2.2 获取到数组的index的位置
计算了Hash,我们现在要把它插入数组中了
i = (tab.length - 1) & hash;
通过位运算,确定了当前的位置,因为HashMap数组的大小总是2^n,所以实际的运算就是 (0xfff…ff) & hash ,这里的tab.length-1相当于一个mask,滤掉了大于当前长度位的hash,使每个i都能插入到数组中。
6.2.3 生成包装类
这个对象是一个包装类,Node
static class Node

原文地址:https://www.cnblogs.com/llaq/p/9498068.html

时间: 2024-10-09 10:56:53

hash算法学习的相关文章

算法学习 - Hash Table操作,分离链接法解决哈希冲突

分离链接法 hash table是映射机制的,最大的优点就是它的操作是O(1)级别的.但是会出现哈希冲突,这就需要几种办法来解决.这里先说一种:分离链接法. 就是当插入的位置已经存在一个值之后,那么在这个值之后插入,就可以了,也叫拉链法.(但是其实会降低查找速度,变成O(n)级别) 下面是代码: // // main.cpp // HashTable_SeparateChaining // // Created by Alps on 14-8-5. // Copyright (c) 2014年

分布式memcached学习(四)&mdash;&mdash; 一致性hash算法原理

    分布式一致性hash算法简介 当你看到"分布式一致性hash算法"这个词时,第一时间可能会问,什么是分布式,什么是一致性,hash又是什么.在分析分布式一致性hash算法原理之前,我们先来了解一下这几个概念. 分布式 分布式(distributed)是指在多台不同的服务器中部署不同的服务模块,通过远程调用协同工作,对外提供服务. 以一个航班订票系统为例,这个航班订票系统有航班预定.网上值机.旅客信息管理.订单管理.运价计算等服务模块.现在要以集中式(集群,cluster)和分布

分布式缓存技术memcached学习系列(四)—— 一致性hash算法原理

文章主目录 分布式一致性hash算法简介 分布式一致性hash算法使用背景 环形hash空间 映射key到环形hash空间 映射server节点到hash空间 映射key到server节点 添加server节点 删除server节点 虚拟节点的引入 节点变化数据分流的问题 一致性hash算法与取模算法的比较 参考文档 回到顶部 分布式一致性hash算法简介 当你看到“分布式一致性hash算法”这个词时,第一时间可能会问,什么是分布式,什么是一致性,hash又是什么.在分析分布式一致性hash算法

算法学习三阶段

?? 第一阶段:练经典经常使用算法,以下的每一个算法给我打上十到二十遍,同一时候自己精简代码, 由于太经常使用,所以要练到写时不用想,10-15分钟内打完,甚至关掉显示器都能够把程序打 出来. 1.最短路(Floyd.Dijstra,BellmanFord) 2.最小生成树(先写个prim,kruscal 要用并查集,不好写) 3.大数(高精度)加减乘除 4.二分查找. (代码可在五行以内) 5.叉乘.判线段相交.然后写个凸包. 6.BFS.DFS,同一时候熟练hash 表(要熟,要灵活,代码要

对一致性Hash算法,Java代码实现的深入研究

一致性Hash算法 关于一致性Hash算法,在我之前的博文中已经有多次提到了,MemCache超详细解读一文中"一致性Hash算法"部分,对于为什么要使用一致性Hash算法和一致性Hash算法的算法原理做了详细的解读. 算法的具体原理这里再次贴上: 先构造一个长度为232的整数环(这个环被称为一致性Hash环),根据节点名称的Hash值(其分布为[0, 232-1])将服务器节点放置在这个Hash环上,然后根据数据的Key值计算得到其Hash值(其分布也为[0, 232-1]),接着在

算法学习 - HashTable开放地址法解决哈希冲突

开放地址法解决哈希冲突 线性开放地址法 线性开放地址法就是在hash之后,当发现在位置上已经存在了一个变量之后,放到它下一个位置,假如下一个位置也冲突,则继续向下,依次类推,直到找到没有变量的位置,放进去. 平方开放地址法 平方地址法就是在hash之后,当正确位置上存在冲突,不放到挨着的下一个位置,而是放到第2^0位置,假如继续冲突放到2^1的位置,依次2^3... 直到遇到不冲突的位置放进去. 双散列开放地址法 双散列同上,不过不是放到2^的位置,而是放到key - hash(key, tab

【转载】对一致性Hash算法,Java代码实现的深入研究

原文地址:http://www.cnblogs.com/xrq730/p/5186728.html 一致性Hash算法 关于一致性Hash算法,在我之前的博文中已经有多次提到了,MemCache超详细解读一文中"一致性Hash算法"部分,对于为什么要使用一致性Hash算法.一致性Hash算法的算法原理做了详细的解读. 算法的具体原理这里再次贴上: 先构造一个长度为232的整数环(这个环被称为一致性Hash环),根据节点名称的Hash值(其分布为[0, 232-1])将服务器节点放置在这

算法学习知识点

 ACMer必备知识(这么多呀,慢慢学了-- 图论 路径问题 0/1边权最短路径 BFS 非负边权最短路径(Dijkstra)   (可以用 Dijkstra解决问题的特征) 负边权最短路径   Bellman-Ford Bellman-Ford的 Yen-氏优化 差分约束系统 Floyd 广义路径问题   传递闭包 极小极大距离 /极大极小距离 Euler Path / Tour 圈套圈算法 混合图的 EulerPath / Tour  Hamilton Path / Tour 特殊图的

一致性Hash算法(转载)

原文地址http://blog.csdn.net/caigen1988/article/details/7708806 consistent hashing 算法早在 1997 年就在论文Consistent hashing and random trees 中被提出,目前在 cache 系统中应用越来越广泛: 1 基本场景 比如你有 N 个 cache 服务器(后面简称 cache ),那么如何将一个对象 object 映射到 N 个 cache 上呢,你很可能会采用类似下面的通用方法计算 o