自动曝光修复算法 附完整C代码

众所周知,

图像方面的3A算法有:

AF自动对焦(Automatic Focus)
自动对焦即调节摄像头焦距自动得到清晰的图像的过程

AE自动曝光(Automatic Exposure)
自动曝光的是为了使感光器件获得合适的曝光量

AW自动白平衡(Automatic White Balance)
白平衡的本质是使白色物体在任何光源下都显示白色

前面的文章也有提及过,在刚开始做图像算法的时候,我是先攻克的自动白平衡算法。

后来攻克自动曝光的时候,傻啦吧唧的,踩了不少坑。

我相信一定不止我一个,一开始的时候抱着对图像均衡化,

软磨硬泡,想要做出兼顾自动曝光和自动白平衡的算法。

可惜,图像均衡化去做白平衡或者自动曝光,这条路是错的。

严格意义上来说,图像均衡化是拉伸曲线,这种做法有个弊端。

它没有考虑到图像的空间信息,也就是局部信息。

当然如果是处理音频之类的算法,肯定要考虑时间信息,因为数据是时序性为主的。

而图像,明显是空间信息为主的。

所以从理论上来说,用拉伸曲线这种不具备空间信息的操作,来做空间信息处理的事情,是不科学的。

我记得这博客刚开始写的时候,好多网友问我,为什么你要写那么多图像模糊算法,

图像模糊算法好像很鸡肋啊,没什么用的吧。

这就大错特错了,因为模糊算法是图像算法中,典型的包含空间信息的全局算法。

也就是说,如果要玩好图像算法,玩好模糊算法就是标配。

本次分享的算法为《Local Color Correction using Non-Linear Masking》,是ImageShop博主,

彭兄发出来的,安利一下他的博客https://www.cnblogs.com/imageshop 。

这个文章里的算法比较简单,

主要是通过图像模糊获取局域权重信息,然后映射回图片上。

matlab代码如下:

% Read the image
A=imread(‘input.jpg‘);

% Seperate the Channels
R=A(:,:,1);
G=A(:,:,2);
B=A(:,:,3);

% Calculate Intensity Component
I=(R+G+B)/3;

% Invert the image
I_inverted=255-I;

% Apply Average Filter to obtain the Mask Image
h_average=fspecial(‘average‘,15);
M=imfilter(I_inverted,h_average);

% Color Correction for R channel
R_new=zeros(size(R));
[c_y, c_x,~] = size(R);
for j = 1:c_x
        for i = 1:c_y
            p=double(R(i,j));
            q=double(M(i,j));
            R_new(i,j,:)=int8(255*((p/255)^(2^((128-q)/128))));
        end
end

% Color Correction for G channel
G_new=zeros(size(G));
[c_y, c_x,~] = size(G);
for j = 1:c_x
        for i = 1:c_y
            p=double(G(i,j));
            q=double(M(i,j));
            G_new(i,j,:)=int8(255*((p/255)^(2^((128-q)/128))));
        end
end

% Color Correction for B channel
B_new=zeros(size(B));
[c_y, c_x,~] = size(B);
for j = 1:c_x
        for i = 1:c_y
            p=double(B(i,j));
            q=double(M(i,j));
            B_new(i,j,:)=int8(255*((p/255)^(2^((128-q)/128))));
        end
end

% Output Image
O=zeros(size(A));
O(:,:,1)=R_new;
O(:,:,2)=G_new;
O(:,:,3)=B_new;

% Convert the double output image to uint8
O=uint8(O);

% Plot the images
subplot(1,3,1), imshow(A), title(‘Original Image‘);
subplot(1,3,2), imshow(M), title(‘Mask‘);
subplot(1,3,3), imshow(O), title(‘Output Image‘);

算法步骤很清晰,就不展开了。

有兴趣的同学,品读下论文吧。

论文链接直达

这个算法其实只是简单采用局部信息进行曝光调节,

但是并不能很好的适配很多图片情景。

需要进行二次改造,

例如:  白平衡,纹理处理更加自然诸如此类,之后就能更加美美哒。

师傅领进门,修行在个人。

改进的思路和方法就不展开一一细说了,

有兴趣的同学,可以考虑进一步改进。

效果图如下:

主要的算法函数实现如下:

void LocalColorCorrection(unsigned char *Input, unsigned char *Output, int Width, int Height, int Channels) {
    unsigned char *Mask = (unsigned char *) malloc(Width * Height * sizeof(unsigned char));
    if (Mask == NULL)
        return;
    unsigned char LocalLut[256 * 256];
    for (int mask = 0; mask < 256; ++mask) {
        unsigned char *pLocalLut = LocalLut + (mask << 8);
        for (int pix = 0; pix < 256; ++pix) {
            pLocalLut[pix] = ClampToByte(255.0f * powf(pix / 255.0f, powf(2.0f, (128.0f - mask) / 128.0f)));
        }
    }
    InvertGrayscale(Input, Output, Width, Height, Channels);
    int Radius = (MAX(Width, Height) / 512) + 1;
    BoxBlurGrayscale(Output, Mask, Width, Height, Radius);
    for (int Y = 0; Y < Height; Y++) {
        unsigned char *pOutput = Output + (Y * Width * Channels);
        unsigned char *pInput = Input + (Y * Width * Channels);
        unsigned char *pMask = Mask + (Y * Width);
        for (int X = 0; X < Width; X++) {
            unsigned char *pLocalLut = LocalLut + (pMask[X] << 8);
            for (int C = 0; C < Channels; C++) {
                pOutput[C] = pLocalLut[pInput[C]];
            }
            pOutput += Channels;
            pInput += Channels;
        }
    }
    free(Mask);
}

做了一些算法性能上的优化,720P,1080P下实时没半点问题。

至于进一步优化性能和效果,就留待下回分解,

当然有没有下回,得看心情。

附完整C代码:

/**
*implmentation of Local Color Correction using Non-Linear Masking published by Nathan Moroney Hewlett-Packard Laboratories, Palo Alto, California.
 **/
#include "browse.h"

#define USE_SHELL_OPEN

#define STB_IMAGE_STATIC
#define STB_IMAGE_IMPLEMENTATION

#include "stb_image.h"
/* ref:https://github.com/nothings/stb/blob/master/stb_image.h */
#define TJE_IMPLEMENTATION

#include "tiny_jpeg.h"
/* ref:https://github.com/serge-rgb/TinyJPEG/blob/master/tiny_jpeg.h */
#include <math.h>
#include <stdbool.h>
#include <stdio.h>
#include "timing.h"
#include <stdint.h>
#include <assert.h>

#ifndef _MAX_DRIVE
#define _MAX_DRIVE 3
#endif
#ifndef _MAX_FNAME
#define _MAX_FNAME 256
#endif
#ifndef _MAX_EXT
#define _MAX_EXT 256
#endif
#ifndef _MAX_DIR
#define _MAX_DIR 256
#endif
#ifndef MIN
#define MIN(a, b)    ( (a) > (b) ? (b) : (a) )
#endif
#ifndef MAX
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
#endif
char saveFile[1024];

unsigned char *loadImage(const char *filename, int *Width, int *Height, int *Channels) {
    return (stbi_load(filename, Width, Height, Channels, 0));
}

void saveImage(const char *filename, int Width, int Height, int Channels, unsigned char *Output) {
    memcpy(saveFile + strlen(saveFile), filename, strlen(filename));
    *(saveFile + strlen(saveFile) + 1) = 0;

    if (!tje_encode_to_file(saveFile, Width, Height, Channels, true, Output)) {
        fprintf(stderr, "save JPEG fail.\n");
        return;
    }
#ifdef USE_SHELL_OPEN
    browse(saveFile);
#endif
}

void splitpath(const char *path, char *drv, char *dir, char *name, char *ext) {
    const char *end;
    const char *p;
    const char *s;
    if (path[0] && path[1] == ‘:‘) {
        if (drv) {
            *drv++ = *path++;
            *drv++ = *path++;
            *drv = ‘\0‘;
        }
    } else if (drv)
        *drv = ‘\0‘;
    for (end = path; *end && *end != ‘:‘;)
        end++;
    for (p = end; p > path && *--p != ‘\\‘ && *p != ‘/‘;)
        if (*p == ‘.‘) {
            end = p;
            break;
        }
    if (ext)
        for (s = end; (*ext = *s++);)
            ext++;
    for (p = end; p > path;)
        if (*--p == ‘\\‘ || *p == ‘/‘) {
            p++;
            break;
        }
    if (name) {
        for (s = p; s < end;)
            *name++ = *s++;
        *name = ‘\0‘;
    }
    if (dir) {
        for (s = path; s < p;)
            *dir++ = *s++;
        *dir = ‘\0‘;
    }
}

void getCurrentFilePath(const char *filePath, char *saveFile) {
    char drive[_MAX_DRIVE];
    char dir[_MAX_DIR];
    char fname[_MAX_FNAME];
    char ext[_MAX_EXT];
    splitpath(filePath, drive, dir, fname, ext);
    size_t n = strlen(filePath);
    memcpy(saveFile, filePath, n);
    char *cur_saveFile = saveFile + (n - strlen(ext));
    cur_saveFile[0] = ‘_‘;
    cur_saveFile[1] = 0;
}

int GetMirrorPos(int Length, int Pos) {
    if (Pos < 0)
        return -Pos;
    else if (Pos >= Length)
        return Length + Length - Pos - 2;
    else
        return Pos;
}

unsigned char ClampToByte(int Value) {
    if (Value < 0)
        return 0;
    else if (Value > 255)
        return 255;
    else
        return (unsigned char) Value;
}

void FillLeftAndRight_Mirror(int *Array, int Length, int Radius) {
    for (int X = 0; X < Radius; X++) {
        Array[X] = Array[Radius + Radius - X];
        Array[Radius + Length + X] = Array[Radius + Length - X - 2];
    }
}

int SumOfArray(const int *Array, int Length) {
    int Sum = 0;
    for (int X = 0; X < Length; X++) {
        Sum += Array[X];
    }
    return Sum;
}

void BoxBlurGrayscale(unsigned char *input, unsigned char *output, int Width, int Height, int Radius) {
    if ((input == NULL) || (output == NULL)) return;
    if ((Width <= 0) || (Height <= 0) || (Radius <= 0)) return;
    if (Radius < 1) return;
    Radius = MIN(MIN(Radius, Width - 1), Height - 1);
    int SampleAmount = (2 * Radius + 1) * (2 * Radius + 1);
    float Inv = 1.0f / SampleAmount;

    int *ColValue = (int *) malloc((Width + Radius + Radius) * sizeof(int));
    int *ColOffset = (int *) malloc((Height + Radius + Radius) * sizeof(int));
    if ((ColValue == NULL) || (ColOffset == NULL)) {
        if (ColValue != NULL) free(ColValue);
        if (ColOffset != NULL) free(ColOffset);
        return;
    }
    for (int Y = 0; Y < Height + Radius + Radius; Y++)
        ColOffset[Y] = GetMirrorPos(Height, Y - Radius);
    {
        for (int Y = 0; Y < Height; Y++) {
            unsigned char *scanLineOut = output + Y * Width;
            if (Y == 0) {
                memset(ColValue + Radius, 0, Width * sizeof(int));
                for (int Z = -Radius; Z <= Radius; Z++) {
                    unsigned char *scanLineIn = input + ColOffset[Z + Radius] * Width;
                    for (int X = 0; X < Width; X++) {
                        ColValue[X + Radius] += scanLineIn[X];
                    }
                }
            } else {
                unsigned char *RowMoveOut = input + ColOffset[Y - 1] * Width;
                unsigned char *RowMoveIn = input + ColOffset[Y + Radius + Radius] * Width;
                for (int X = 0; X < Width; X++) {
                    ColValue[X + Radius] -=
                            RowMoveOut[X] - RowMoveIn[X];
                }
            }
            FillLeftAndRight_Mirror(ColValue, Width, Radius);
            int LastSum = SumOfArray(ColValue, Radius * 2 + 1);
            scanLineOut[0] = ClampToByte((int) (LastSum * Inv));
            for (int X = 0 + 1; X < Width; X++) {
                int NewSum = LastSum - ColValue[X - 1] + ColValue[X + Radius + Radius];
                scanLineOut[X] = ClampToByte((int) (NewSum * Inv));
                LastSum = NewSum;
            }
        }
    }
    free(ColValue);
    free(ColOffset);
}

void InvertGrayscale(unsigned char *Input, unsigned char *Output, int Width, int Height, int Channels) {
    if (Channels == 1) {
        for (unsigned int Y = 0; Y < Height; Y++) {
            unsigned char *pOutput = Output + (Y * Width);
            unsigned char *pInput = Input + (Y * Width);
            for (unsigned int X = 0; X < Width; X++) {
                pOutput[X] = (unsigned char) (255 - pInput[X]);
            }
        }
    } else {
        for (unsigned int Y = 0; Y < Height; Y++) {
            unsigned char *pOutput = Output + (Y * Width);
            unsigned char *pInput = Input + (Y * Width * Channels);
            for (unsigned int X = 0; X < Width; X++) {
                pOutput[X] = (unsigned char) (255 - ClampToByte(
                        (21842 * pInput[0] + 21842 * pInput[1] + 21842 * pInput[2]) >> 16));
                pInput += Channels;
            }
        }
    }
}

void LocalColorCorrection(unsigned char *Input, unsigned char *Output, int Width, int Height, int Channels) {
    unsigned char *Mask = (unsigned char *) malloc(Width * Height * sizeof(unsigned char));
    if (Mask == NULL)
        return;
    unsigned char LocalLut[256 * 256];
    for (int mask = 0; mask < 256; ++mask) {
        unsigned char *pLocalLut = LocalLut + (mask << 8);
        for (int pix = 0; pix < 256; ++pix) {
            pLocalLut[pix] = ClampToByte(255.0f * powf(pix / 255.0f, powf(2.0f, (128.0f - mask) / 128.0f)));
        }
    }
    InvertGrayscale(Input, Output, Width, Height, Channels);
    int Radius = (MAX(Width, Height) / 512) + 1;
    BoxBlurGrayscale(Output, Mask, Width, Height, Radius);
    for (int Y = 0; Y < Height; Y++) {
        unsigned char *pOutput = Output + (Y * Width * Channels);
        unsigned char *pInput = Input + (Y * Width * Channels);
        unsigned char *pMask = Mask + (Y * Width);
        for (int X = 0; X < Width; X++) {
            unsigned char *pLocalLut = LocalLut + (pMask[X] << 8);
            for (int C = 0; C < Channels; C++) {
                pOutput[C] = pLocalLut[pInput[C]];
            }
            pOutput += Channels;
            pInput += Channels;
        }
    }
    free(Mask);
}

int main(int argc, char **argv) {
    printf("Local Color Correction demo\n ");
    printf("blog:http://cpuimage.cnblogs.com/ \n ");

    if (argc < 2) {
        printf("usage: %s   image \n ", argv[0]);
        printf("eg: %s   d:\\image.jpg \n ", argv[0]);

        return (0);
    }
    char *szfile = argv[1];

    getCurrentFilePath(szfile, saveFile);

    int Width = 0;
    int Height = 0;
    int Channels = 0;
    unsigned char *inputImage = NULL;

    double startTime = now();
    inputImage = loadImage(szfile, &Width, &Height, &Channels);

    double nLoadTime = calcElapsed(startTime, now());
    printf("load time: %d ms.\n ", (int) (nLoadTime * 1000));
    if ((Channels != 0) && (Width != 0) && (Height != 0)) {
        unsigned char *outputImg = (unsigned char *) stbi__malloc(Width * Channels * Height * sizeof(unsigned char));
        if (inputImage) {
            memcpy(outputImg, inputImage, (size_t) (Width * Channels * Height));
        } else {
            printf("load: %s fail!\n ", szfile);
        }
        startTime = now();
        LocalColorCorrection(inputImage, outputImg, Width, Height, Channels);
        double nProcessTime = calcElapsed(startTime, now());

        printf("process time: %d ms.\n ", (int) (nProcessTime * 1000));

        startTime = now();

        saveImage("done.jpg", Width, Height, Channels, outputImg);
        double nSaveTime = calcElapsed(startTime, now());

        printf("save time: %d ms.\n ", (int) (nSaveTime * 1000));

        if (outputImg) {
            stbi_image_free(outputImg);
        }

        if (inputImage) {
            stbi_image_free(inputImage);
        }
    } else {
        printf("load: %s fail!\n", szfile);
    }

    getchar();
    printf("press any key to exit. \n");

    return (EXIT_SUCCESS);
}

项目地址:https://github.com/cpuimage/LocalColorCorrection

再来一个效果前后对比:

以上,权当抛砖引玉。

若有其他相关问题或者需求也可以邮件联系俺探讨。

邮箱地址是: 
[email protected]

原文地址:https://www.cnblogs.com/cpuimage/p/9125646.html

时间: 2024-11-05 22:41:06

自动曝光修复算法 附完整C代码的相关文章

mser 最大稳定极值区域(文字区域定位)算法 附完整C代码

mser 的全称:Maximally Stable Extremal Regions 第一次听说这个算法时,是来自当时部门的一个同事, 提及到他的项目用它来做文字区域的定位,对这个算法做了一些优化. 也就是中文车牌识别开源项目EasyPR的作者liuruoze,刘兄. 自那时起就有一块石头没放下,想要找个时间好好理理这个算法. 学习一些它的一些思路. 因为一般我学习算法的思路:3个做法, 第一步,编写demo示例. 第二步,进行算法移植或效果改进. 第三步,进行算法性能优化. 然后在这三个过程中

音频降噪算法 附完整C代码

降噪是音频图像算法中的必不可少的. 目的肯定是让图片或语音 更加自然平滑,简而言之,美化. 图像算法和音频算法 都有其共通点. 图像是偏向 空间 处理,例如图片中的某个区域. 图像很多时候是以二维数据为主,矩形数据分布. 音频更偏向 时间 处理,例如语音中的某短时长. 音频一般是一维数据为主,单声道波长. 处理方式也是差不多,要不单通道处理,然后合并,或者直接多通道处理. 只是处理时候数据参考系维度不一而已. 一般而言, 图像偏向于多通道处理,音频偏向于单通道处理. 而从数字信号的角度来看,也可

音频自动增益 与 静音检测 算法 附完整C代码

前面分享过一个算法<音频增益响度分析 ReplayGain 附完整C代码示例> 主要用于评估一定长度音频的音量强度, 而分析之后,很多类似的需求,肯定是做音频增益,提高音量诸如此类做法. 不过在项目实测的时候,其实真的很难定标准, 到底在什么样的环境下,要增大音量,还是降低. 在通讯行业一般的做法就是采用静音检测, 一旦检测为静音或者噪音,则不做处理,反之通过一定的策略进行处理. 这里就涉及到两个算法,一个是静音检测,一个是音频增益. 增益其实没什么好说的,类似于数据归一化拉伸的做法. 静音检

音频自动增益 与 静音检测 算法 附完整C代码【转】

转自:https://www.cnblogs.com/cpuimage/p/8908551.html 前面分享过一个算法<音频增益响度分析 ReplayGain 附完整C代码示例> 主要用于评估一定长度音频的音量强度, 而分析之后,很多类似的需求,肯定是做音频增益,提高音量诸如此类做法. 不过在项目实测的时候,其实真的很难定标准, 到底在什么样的环境下,要增大音量,还是降低. 在通讯行业一般的做法就是采用静音检测, 一旦检测为静音或者噪音,则不做处理,反之通过一定的策略进行处理. 这里就涉及到

基于傅里叶变换的音频重采样算法 (附完整c代码)

前面有提到音频采样算法: WebRTC 音频采样算法 附完整C++示例代码 简洁明了的插值音频重采样算法例子 (附完整C代码) 近段时间有不少朋友给我写过邮件,说了一些他们使用的情况和问题. 坦白讲,我精力有限,但一般都会抽空回复一下. 大多数情况,阅读一下代码就能解决的问题, 也是要尝试一下的. 没准,你就解决了呢? WebRtc的采样算法本身就考虑到它的自身应用场景, 所以它会有一些局限性,例如不支持任意采样率等等. 而简洁插值的这个算法, 我个人也一直在使用,因为简洁明了,简单粗暴. 我自

图片文档倾斜矫正算法 附完整c代码

2年前在学习图像算法的时候看到一个文档倾斜矫正的算法. 也就是说能将一些文档图像进行旋转矫正, 当然这个算法一般用于一些文档扫描软件做后处理 或者用于ocr 文字识别做前处理. 相关的关键词: 抗倾斜 反倾斜  Deskew 等等. 最简单算法实现思路,采用 霍夫变换(Hough Transform)进行直线检测, 当然也可以用霍夫变换检测圆. 在倾斜矫正算法中,自然就是检测直线. 通过对检测出来的直线进行角度判断, 一般取 认可度最高的几条直线进行计算, 最后求取均衡后的角度值. 进行图像角度

传统高斯模糊与优化算法(附完整C++代码)

高斯模糊(英语:Gaussian Blur),也叫高斯平滑,是在Adobe Photoshop.GIMP以及Paint.NET等图像处理软件中广泛使用的处理效果,通常用它来减少图像噪声以及降低细节层次.这种模糊技术生成的图像,其视觉效果就像是经过一个半透明屏幕在观察图像,这与镜头焦外成像效果散景以及普通照明阴影中的效果都明显不同.高斯平滑也用于计算机视觉算法中的预先处理阶段,以增强图像在不同比例大小下的图像效果(参见尺度空间表示以及尺度空间实现). 从数学的角度来看,图像的高斯模糊过程就是图像与

音频算法之小黄人变声 附完整C代码

前面提及到<大话音频变声原理 附简单示例代码>与<声音变调算法PitchShift(模拟汤姆猫) 附完整C++算法实现代码> 都稍微讲过变声的原理和具体实现. 大家都知道,算法从实现到最后工程应用,中间的环节和问题特别多. 尤其是编码的架构设计,好的数据结构和代码逻辑封装肯定是可复用,组件化的. 前几天写完<音频识别算法思考与阶段性小结>的时候, 我也提及到了. 会做一些算法编码优化相关的分享. 而有时候我总觉得文字表达很苍白, 所以我尽可能地把代码写得简洁易懂, 一方

MTCNN人脸检测 附完整C++代码

人脸检测 识别一直是图像算法领域一个主流话题. 前年 SeetaFace 开源了人脸识别引擎,一度成为热门话题. 虽然后来SeetaFace 又放出来 2.0版本,但是,我说但是... 没有训练代码,想要自己训练一下模型那可就犯难了. 虽然可以阅读源码,从前向传播的角度,反过来实现训练代码, 但是谁有那个闲功夫和时间,去折腾这个呢? 有的时候还是要站在巨人的肩膀上,你才能看得更远. 而SeetaFace 不算巨人,只是当年风口上的猪罢了. 前年,为了做一个人脸项目,也是看遍了网上各种项目. 林林