Sql优化器究竟帮你做了哪些工作?

关系型数据库的一大优势之一,用户无需关心数据的访问方式,因为这些优化器都帮我们处理好了,但sql查询优化的时候,我不得不要对此进行关注,因为这牵扯到查询性能问题。

有经验的程序员都会对一些sql优化了如指掌,比如我们常说的最左匹配原则,非BT谓词规避等等,那么优化器是如何确定这些的?以及为何一定要最左匹配,最左匹配的原理是什么,你是否有深入了解?

这一篇我们就通过一些实例来剖析优化器做了哪些工作,以方便我们更好的优化SQL查询。

本篇你可以知道:

  1. sql的访问路径是什么
  2. 优化器如何确定最优访问路径
  3. 最左匹配的原则依据是什么
  4. 如何有效的评估sql命中行数

示例table:

CREATE TABLE test (
?
  id int(11) NOT NULL AUTO_INCREMENT,
?
  user_name varchar(100) DEFAULT NULL,
?
  sex int(11) DEFAULT NULL,
?
  age int(11) DEFAULT NULL,
?
  c_date datetime DEFAULT NULL,
?
  PRIMARY KEY (id),
?
  # 索引
?
  KEY id_name_sex (id,user_name,sex),
?
  KEY name_sex_age (user_name,sex,age)
?
) ENGINE=InnoDB AUTO_INCREMENT=12 DEFAULT CHARSET=utf8;

  

?

一、访问路径

在SQL语句能够被真正执行之前,优化器必须首先确定如何访问数据。这包括:应该使用哪一个索引,索引的访问方式如何,是否需要辅助式随机读,等等。

从一条SQL,到优化器优化,再到引擎进行数据查询,落地到数据的存储页面,这是一个访问路径确定的过程。

二、谓词

谓词就是我们常说的where子句中的一个或多个搜索参数组成。谓词表达式是索引设计的主要入手点,如果一个索引能够满足select查询语句的所有谓词表达式,那么优化器就可能建立一个高效的访问路径。

select * from test where id =1 and user_name like ’test%’

  

比如,上述查询 中,where后面的搜索参数,id 和user_name 就是谓词。

三、索引片

索引片即代表谓词表达式所确定的值域范围,而访问路径的成本很大程度上取决于索引片的厚度。

索引片越厚,需要扫描的索引页就越多,需要处理的索引记录也越多,而且最大的开销还是来自于需要对标进行同步读操作。相反,索引片比较窄,就会显著减少索引访问的那部分开销,同时会有更少的表同步读取上。

同步读是一个随机IO操作,单次的读取就要耗费10ms左右的时间。这个我们在上篇有说明。

比如:

//会匹配到5个数据
?
sql1:select * from test where sex=1;
?
// 匹配到2个数据
?
sql2:select * from test where sex=1 and age <10;

  

因此我们需要通过谓词来确定索引片的厚度,过滤的值域范围越少,索引片厚度就越窄。那么谓词一定就能匹配到索引么,或者说匹配的规则是什么?

四、匹配列&过滤列

谓词不一定都能匹配到索引,能够匹配上的,我们称之为匹配列。此时它可以参与索引片的定义。

只有匹配列和过滤列可以参与索引片的定义和过滤,其他不可。

我们来看下谓词匹配的定义:

检查索引列,从头到尾依次检查索引列,查看以下规则:

  1. 在where子句中,该列是否至少拥有一个足够简单的谓词与之对应?如果有,则这个列就是匹配列。如果没有,那么这个列及其后面的索引列都是非匹配列。
  2. 谓词是否是一个范围谓词,如果是,那么剩余的索引列都是非匹配列。
  3. 对于最后一个匹配列之后的索引列,如果拥有一个足够简单的谓词与其对应,那么该列为过滤列。

1、示例

select * from test where user_name=’test1’ and sex>0 and age =10

  

发现索引id_name_sex

  1. 逐行检查其索引列(id,user_name,sex)
  2. 首先检查 id,发现where后面的谓词没有与之对应,则 这个索引列以及后面的索引列都是非匹配列
  3. 索引id_name_sex匹配结束,无匹配列

发现索引name_sex_age

  1. 逐行检查其索引列(user_name,sex,age)
  2. 首先检查 user_name,发现where后面的 谓词 user_name 有与之对应,认定此列为匹配列
  3. 检查索引字段sex,发现where后面有谓词sex与之对应,认定此列为匹配列,由于谓词sex是范围谓词,则剩余的索引为非匹配列。
  4. 索引列age 是在最后一个匹配列sex 之后,而又有谓词age 与之对应,因此此列 为过滤列,

通过这个示例,我们最终确定了:

  • 匹配索引: name_sex_age
  • 匹配列: user_name,sex
  • 过滤列: age

我们查看下 explain ,和我们分析的对应。

2、确定匹配列有什么用

确定匹配列之后我们可以知道当前的查询会用到哪些索引,以及匹配到该索引的哪些列,最终可以提前锁定数据的访问范围,为数据的读取节省读取压力。

相对于没用匹配到索引的查询,有匹配列的查询,条件过滤是前置的,而没有匹配到索引的查询,条件过滤是后置的,即全表扫描之后,再过滤结果,如此磁盘IO压力过大。

另外 “最左匹配”原则也是基于匹配列规则而来,为何是最左匹配,除了B树的原理之外,还有一个重要的原因,在核对匹配列的时候,是从头到尾依次检查索引列。

所以对于是否能够匹配到索引,where后面的谓词顺序不重要,重要的是索引列的顺序。

比如:

select * from test where user_name=’test1’ and sex>0 and age =10
?
select * from test where sex>0 and user_name=’test1’ and age =10
?
select * from test where age =10 and user_name=‘test1‘ and sex>0

  

都可以匹配到name_sex_age 索引

3、复杂谓词

like 谓词

如果值是%xx ,那么将会选择全索引扫描,不参与索引匹配,如果是xx%,这会参与索引匹配,选择索引片扫描。

OR操作符

即便是简单的谓词,如果它们与其他谓词之间为OR操作,对优化器而言是异常困难的,除非在多索引访问,才有可能参与到一个索引片的定义,尽量不要用。

假设一个谓词的判定结果为false,而此时不检查其他谓词就不能确定的将一行记录排除在外,那么这类谓词对优化器而言就是十分困难的。

BT谓词

比如只有and 操作符,那么所有的简单谓词都可以称谓BT谓词,也就是好的谓词,除非访问路径是一个多索引扫描,否则只有BT谓词可以参加定义索引片。

谓词值不确定

比如谓词的值采用了函数,或者参与了计算,优化器在做静态SQL绑定的时候,每次都需要重新计算选择,无法缓存,耗费大量的CPU,也无法参与索引列的匹配。

五、过滤因子

匹配列确定了使用那些索引列,但索引片的厚度(也就是预计要访问多少行),还没有估算出来。此处需要进行通过过滤因子来确定。

过滤因子描述的谓词的选择性,即表中满足谓词条件的记录行数所占用的比例,依赖于列值分布情况。

1、单个谓词的过滤因子

比如,我们的的test表有10000条记录,谓词user_name 匹配了 一个索引列,其过滤因子是0.2%(1/不同user_name数量=user_name中有500个不同值的比率),则意味着查询结果会包含20行的记录。

select * from test where user_name=’test’

  

2、组合谓词的过滤因子

当有多个谓词符合匹配列的时候,我们可以通过单个谓词的过滤因子推导出组合过滤因子。一般的公式是:

组合过滤因子=谓词1过滤因子*谓词2过滤因子....

比如如下查询

select * from test where user_name=’test’ and sex=1 and age =10

包含3个谓词,user_name、sex、age、其中user_name有500个不同的值,sex有2个不同的值,age有40个不同的值。

则每个谓词的过滤因子:

FF(user_name) =1/500*100 =0.2%

FF(sex) =1/2*100=50%

FF(age) =1/40*100=2.5%

组合过滤因子=0.2%*50%*2.5%=0.0025%

通过以上组合过滤因子,可以推算出最终的结果集=10000*0.0025%=0.25 ~=1

通过以上过滤因子评估之后,我们可以看到,最终需要查找的结果集只需要获取1行就够了,这对数据库的磁盘访问有很高的性能提升。

这也是优化器在评估可选访问路径成时,必须先进行过滤因子评估的重要性。

六、排序

物化结果集意味着通过执行必要的数据库访问来构建结果集。最好情况下,只需要返回一条记录,而最坏的情况下需要返回多条记录,需要发起大量的磁盘读取。而排序就是其中一种。

在以下情况中,一次fetch调用只需要物化一条记录,否则对结果进行排序的时候就需要物化整个结果集。

  • 没有排序需求,比如order by,group by 等。
  • 虽然需要排序满足以下两个条件:
  1. <!--存在一个索引满足结果集的排序需求,比如上述的(id_name_sex) 或者(name_sex_age)-->
  2. <!--优化器决定以传统的方式使用这个索引,即访问第一条满足条件的索引行并读取相应的表行,然后访问第二条满足条件的索引行并读取相应的表行,依次类推。-->
  3. <!--比如使用索引(name_sex_age)时候,select * from test where user_name=’test’ order by sex ,此时在索引中,结果集基于sex本身就是有序的-->

七、最后

sql优化器做的不仅仅是你这些工作,但索引片的大小的预估,以及访问路径的确定却是它最重要的工作,后续我们再继续介绍。

转载出处:https://my.oschina.net/u/1859679/blog/1586098

版权申明:内容来源网络,版权归原创者所有。除非无法确认,我们都会标明作者及出处,如有侵权烦请告知,我们会立即删除并表示歉意。谢谢。

小编积累多年的干货文档免费赠送,包含前端后端和测试,系统架构,高并发处理,优化等

原文地址:https://www.cnblogs.com/xdclass/p/9447526.html

时间: 2024-10-05 20:55:12

Sql优化器究竟帮你做了哪些工作?的相关文章

【重磅干货】看了此文,Oracle SQL优化文章不必再看!

听“俊”一席话,胜读十年书.看了这篇由DBA+社群联合发起人丁俊大师(网名:dingjun123)分享的SQL优化大作,其他Oracle SQL优化文章都不必再看了! 专家简介 丁俊 网名:dingjun123 DBA+社群联合发起人 性能优化专家,Oracle ACEA,ITPUB开发版资深版主.8年电信行业从业经验,在某大型电信系统提供商工作7年,任资深工程师,从事过系统开发与维护.业务架构和数据分析.系统优化等工作.擅长基于ORACLE的系统优化,精通SQL.PL/SQL.JAVA等.电子

转://从一条巨慢SQL看基于Oracle的SQL优化

http://mp.weixin.qq.com/s/DkIPwbDKIjH2FMN13GkT4w 本次分享的内容是基于Oracle的SQL优化,以一条巨慢的SQL为例,从快速解读SQL执行计划.如何从执行计划中找到SQL执行慢的Root Cause.统计信息与cardinality问题.探索性能杀手Filter操作.如何进行逻辑重写让SQL起飞等多个维度进行解析,最终优化巨慢SQL语句,希望能够抛砖引玉,和大家一起探讨SQL优化方法. 另外,还简单介绍了两种解决疑难SQL优化问题的工具:1005

oracle sql优化

第一掌 避免对列的操作 任何对列的操作都可能导致全表扫描,这里所谓的操作包括数据库函数.计算表达式等等,查询时要尽可能将操作移至等式的右边,甚至去掉函数. 例1:下列SQL条件语句中的列都建有恰当的索引,但30万行数据情况下执行速度却非常慢: select * from record where  substrb(CardNo,1,4)='5378'(13秒) select * from record where  amount/30< 1000(11秒) select * from recor

SQL优化的若干原则

SQL语句:是对数据库(数据)进行操作的惟一途径:消耗了70%~90%的数据库资源:独立于程序设计逻辑,相对于对程序源代码的优化,对SQL语句的优化在时间成本和风险上的代价都很低:可以有不同的写法:易学,难精通. SQL优化:固定的SQL书写习惯,相同的查询尽量保持相同,存储过程的效率较高.应该编写与其格式一致的语句,包括字母的大小写.标点符号.换行的位置等都要一致 ORACLE优化器:在任何可能的时候都会对表达式进行评估,并且把特定的语法结构转换成等价的结构,这么做的原因是要么结果表达式能够比

Apache Spark 2.2中基于成本的优化器(CBO)(转载)

Apache Spark 2.2最近引入了高级的基于成本的优化器框架用于收集并均衡不同的列数据的统计工作 (例如., 基(cardinality).唯一值的数量.空值.最大最小值.平均/最大长度,等等)来改进查询类作业的执行计划.均衡这些作业帮助Spark在选取最优查询计划时做出更好决定.这些优化的例子包括在做hash-join时选择正确的一方建hash,选择正确的join类型(广播hash join和全洗牌hash-join)或调整多路join的顺序,等等) 在该博客中,我们将深入讲解Spar

PostgreSQL 优化器代码概览

简介PostgreSQL 的开发源自上世纪80年代,它最初是 Michael Stonebraker 等人在美国国防部支持下创建的POSTGRE项目.上世纪末,Andrew Yu 等人在它上面搭建了第一个SQL Parser,这个版本称为Postgre95,也是加州大学伯克利分校版本的PostgreSQL的基石[1]. 我们今天看到的 PostgreSQL 的优化器代码主要是 Tom Lane 在过去的20年间贡献的,令人惊讶的是这20年的改动都是持续一以贯之的,Tom Lane 本人也无愧于"

SQL优化之列裁剪和投影消除

列裁剪 对于没用到的列,则没有必要读取它们的数据去浪费无谓的IO 比如我们有一张表table1,它含有四列数据(a,b,c,d).当我们执行查询select a from table1 where c 10时,我们可以清晰的看到,table1中只有a,c两列被用到了.分别是Selection算子用到c列和Projection算子用到a列.那么DataSource读取数据时,b,d两列则不需要读取,可以裁剪掉. 那么都有哪些算子与列有关系呢?综合我们多年来使用SQL的经验来看,Selection(

你真的了解“SQL”吗?《SQL优化最佳实践》作者带你重新了解SQL

一.SQL :一种熟悉又陌生的编程语言 这里有几个关键词:"熟悉"."陌生"."编程语言". 说它"熟悉",是因为它是DBA和广大开发人员,操作数据库的主要手段,几乎每天都在使用.说它"陌生",是很多人只是简单的使用它,至于它是怎么工作的?如何才能让它更高效的工作?却从来没有考虑过. 这里把SQL归结为一种"编程语言",可能跟很多人对它的认知不同.让我们看看它的简单定义(以下内容摘自百度

Oracle SQL优化一(常见方法)

1.表访问方式优化: a)普通表优先“Index Lookup 索引扫描”,避免全表扫描 大多数场景下,通过“Index Lookup 索引扫描”要比“Full Table Scan (FTS) 全表扫描”效率要高的多.在编写SQL时,为了保证查询能够使用索引,需要避免出现如下场景: is null 和 is not null 在oracle中null是不能够作为索引的,如果某列数据中有“null”,不要在该列上创建索引,即使创建,也不会提高查询性能. 而在SQL语句中,如果使用is null和