[BJOI2006]狼抓兔子(网络流)

题目描述

现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形:

左上角点为(1,1),右下角点为(N,M)(上图中N=3,M=4).有以下三种类型的道路

1:(x,y)<==>(x+1,y)

2:(x,y)<==>(x,y+1)

3:(x,y)<==>(x+1,y+1)

道路上的权值表示这条路上最多能够通过的兔子数,道路是无向的. 左上角和右下角为兔子的两个窝,开始时所有的兔子都聚集在左上角(1,1)的窝里,现在它们要跑到右下角(N,M)的窝中去,狼王开始伏击这些兔子.当然为了保险起见,如果一条道路上最多通过的兔子数为K,狼王需要安排同样数量的K只狼,才能完全封锁这条道路,你需要帮助狼王安排一个伏击方案,使得在将兔子一网打尽的前提下,参与的狼的数量要最小。因为狼还要去找喜羊羊麻烦。

输入输出格式
输入格式:
第一行为N,M.表示网格的大小,N,M均小于等于1000.

接下来分三部分

第一部分共N行,每行M-1个数,表示横向道路的权值.

第二部分共N-1行,每行M个数,表示纵向道路的权值.

第三部分共N-1行,每行M-1个数,表示斜向道路的权值.

输出格式:
输出一个整数,表示参与伏击的狼的最小数量.

输入输出样例
输入样例#1:
3 4
5 6 4
4 3 1
7 5 3
5 6 7 8
8 7 6 5
5 5 5
6 6 6
输出样例#1:
14

这道题算是网络流的水题吧,看到要把兔子全部阻截掉基本上可以考虑到网络流了。
其实这道题是要我们求最小割
由最大流=最小割(证明网上有)
直接跑最大流即可。
建边看似麻烦实际上冷静下来慢慢想其实很简单了。
需要注意的是这张图是双向边,我们把两条边的初始流量都见成\(v\)就可以了

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
    int x=0,w=1;char ch=getchar();
    while(ch>'9'||ch<'0') {if(ch=='-')w=-1;ch=getchar();}
    while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
    return x*w;
}
int n,m,cnt=1,s,t;
int inf=2000000000;
int head[1000001],team[1000001],deep[1000001];
struct node{
int to,next,v;
}edge[6000001];
void add(int x,int y,int v)
{
    cnt++;
    edge[cnt].to=y;
    edge[cnt].next=head[x];
    edge[cnt].v=v;
    head[x]=cnt;
}
bool bfs();
int dfs(int,int);
int main()
{
    int x;
    n=read();m=read();
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<m;j++)
        {
            x=read();
            add((i-1)*m+j,(i-1)*m+j+1,x);
            add((i-1)*m+j+1,(i-1)*m+j,x);
        }
    }
    for(int i=1;i<n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            x=read();
            add((i-1)*m+j,i*m+j,x);
            add(i*m+j,(i-1)*m+j,x);
        }
    }
    for(int i=1;i<n;i++)
    {
        for(int j=1;j<m;j++)
        {
            x=read();
            add((i-1)*m+j,i*m+j+1,x);
            add(i*m+j+1,(i-1)*m+j,x);
        }
    }
    s=1;t=n*m;
    int ans=0;
    while(bfs())
    {
        int d;
        while(d=dfs(s,inf))
        {
            ans+=d;
        }
    }
    printf("%d",ans);
}
bool bfs()
{
    int u,v,l=0,r=1;
    memset(deep,0,sizeof(deep));
    memset(team,0,sizeof(team));
    team[1]=s;deep[s]=1;
    while(l<r)
    {
        l++;
        u=team[l];
        for(int i=head[u];i;i=edge[i].next)
        {
            v=edge[i].to;
            if(!deep[v]&&edge[i].v>0)
            {
                r++;
                deep[v]=deep[u]+1;
                team[r]=v;
            }
        }
    }
    if(!deep[t]) return false;
    return true;
}
int dfs(int k,int v)
{
    //cout<<k<<".."<<endl;
    if(k==t) return v;
    int u,d;
    for(int i=head[k];i;i=edge[i].next)
    {
        u=edge[i].to;
        if(deep[u]==deep[k]+1&&edge[i].v>0)
        {
            d=dfs(u,min(edge[i].v,v));
            if(d>0)
            {
                edge[i].v-=d;
                edge[(i^1)].v+=d;
                return d;
            }
        }
    }
    if(d==0) deep[k]=0;
    return 0;
}

原文地址:https://www.cnblogs.com/lsgjcya/p/9091613.html

时间: 2024-10-07 13:43:39

[BJOI2006]狼抓兔子(网络流)的相关文章

BJOI2006狼抓兔子

1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 9967  Solved: 2267[Submit][Status] Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形:  左上角点为(1,1),右下角点为(N,M)(上图中N=4,M=5).有以下三种类

[BJOI2006]狼抓兔子 暴力AC啦!

直接暴力建边,在lougu上跑的飞快.(except the last test) 总结一下也就是三句话: insert(id(i, j), id(i, j + 1), x) insert(id(i, j), id(i + 1, j), x) insert(id(i, j), id(i + 1, j + 1), x) 没了就,..dinic什么的就看看本博客分享的总结爸... 代码当然还是要发的,即使只是一个暴力.. 1 #include <map> 2 #include <set>

BZOJ1001 BJOI2006 狼抓兔子

Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: 左上角点为(1,1),右下角点为(N,M)(上图中N=3,M=4).有以下三种类型的道路 1:(x,y)<==>(x+1,y) 2:(x,y)<==>(x,y+1) 3:(x,y)<==>(x+1,y+1) 道路上的权值表示这条路上最多能够通过的兔子数,道路是

P4001 [BJOI2006]狼抓兔子

网络流快乐地跑... 这道题就是要求这个无向图的最小割. 根据最小割最大流定理,我们求个最大流就好了. 但是数据巨大.一百万个点,我们看上去就有2996001条边. 这个时候,如果按照网络流做法,建反向边的话,需要11984004条边,MLE. 其实我就没做过无向图的网络流... 结论:无向图网络流,只要两条边捆绑在一起就可以了,互相为反向边. 为什么有向图的时候反向边边权为0,而这里不为0? 无向图有两条边,你必须加上去.有向图压根就没有这条边,只是给你一个反悔的机会而已,是个中介的边. 所以

[BJOI2006]狼抓兔子

思路: 求网格图的最小割.然而网格图的边数比较多,直接用EdmondsKarp算法会TLE(据说用Dinic或ISAP可以过),解决的方法是将网格图的最小割转化成其对偶图的最短路,设图的左下端为起点,右上端为重点,然后跑一遍Dijkstra即可.注意要特判$n=1$或$m=1$的情况,另外因为每个方格实际上是会被斜线分成两个三角,所以点数要开两倍$n^2$,也就是$2\times10^6$. 1 #include<cstdio> 2 #include<cctype> 3 #incl

P2030 - 【BJOI2006】狼抓兔子

P2030 - [BJOI2006]狼抓兔子 Description 八中OJ上本题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1001 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: 左上角点为(1,1),右下角点为(N,M)(上图中N=4,M=5).有以下三种类型的道路 1:(x,y)<==>

bzoj1001 [BeiJing2006]狼抓兔子

1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 23723  Solved: 5981[Submit][Status][Discuss] Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: 左上角点为(1,1),右下角点为(N,M)(上图中N=4,M

【BZOJ】1001: [BeiJing2006]狼抓兔子

1001: [BeiJing2006]狼抓兔子 Description 左上角点为(1,1),右下角点为(N,M)(上图中N=4,M=5).有以下 三种类型的道路 1:(x,y)<==>(x+1,y) 2:(x,y)<==>(x,y+1) 3:(x,y)<==>(x+1,y+1) 道路上的权值表示这条路上最多能够通过的兔子数,道路是无向的. 左上角和右下角为兔子的两个窝,开始时所有的兔子都聚集在左上角(1,1)的窝里,现在它们要跑到右下角(N,M)的窝中去,狼王开始伏击

BZOJ 1001: [BeiJing2006]狼抓兔子【最大流/SPFA+最小割,多解】

1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 23822  Solved: 6012[Submit][Status][Discuss] Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: 左上角点为(1,1),右下角点为(N,M)(上图中N=4,M